Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Глава 24. Самоорганизация24.1. Основные явления, модели, математические образыНаиболее широко явления, связанные с самоорганизацией (возникновением пространственного порядка из беспорядка, образованием сложных пространственных структур в однородной среде и др.), начали обсуждаться в 50-60-е годы в связи с задачами химической кинетики и биологии. В частности, было дано качественное описание волн в сердечной мышце [1], модели морфогенеза [2], автокаталитической химической реакции Белоусова-Жаботинского [3]. Примерно в те же годы была построена теория структур в некоторых гидродинамических течениях (ячейки Бенара при термоконвекции, вихри Тейлора между вращающимися цилиндрами [4]). Довольно быстро выяснилось, что возникновение сложных образований в нелинейных средах или пространственных ансамблях различной природы описывается сходными математическими моделями и решениями [5, 6, 9]. Это позволило (как уже не раз было в теории колебаний и волн) перенести опыт и знания, накопленные, например, при исследовании реакции горения, на анализ распространения популяций в экологической задаче или распространения возбуждения в сердечной ткани. В результате выработались новые понятия и образы: диссипативная структура, бегущий импульс, ревербератор и т. д. - и начали выкристаллизовываться основные универсальные модели, описывающие возникновение и существование структур [7, 8, 15, 19-21, 29, 33, 34]. Фактически возникло новое направление в «нелинейных науках», которое называют неравновесной термодинамикой [5, 2], синергетикой [6, 28], теорией самоорганизации [9, 27], теорией автоволн [7, 30]. Чрезвычайный интерес физиков к явлениям самоорганизации стимулировался проблемами биологии. Самоорганизация наблюдается в ансамблях даже сравнительно простых биологических объектов, например амебоподобных клеток [10]. Такие клетки примерно один раз в 5 мин выделяют гормон цАМФ, однако при достаточном количестве пищи клетки на этот гормон не откликаются и живут независимо. В более жестких условиях одна из клеток начинает ускоренно выделять гормон цАМФ и синхронизует выделение этого гормона у своих ближайших соседей, которые в свою очередь синхронизуют выделение гормона у своих соседей и т. д. После возбуждения гормоном клетка начинает двигаться в сторону возбудителя. Таким образом, возникают два встречных движения — расходящиеся волны стимулятора или синхронизации и сходящееся движение клеток. Этот процесс заканчивается агрегацией — появляются споры, способные выжить в экстремальных условиях. Традиционный физический пример самоорганизации — возникновение в подогреваемом снизу слое жидкости структуры из шестигранных призматических ячеек (ячейки Бенара, рис. 24.1 а). Для образования подобной структуры принципиальны неравновесность нелинейной среды и ее диссипативность — в результате развития конвективной неустойчивости нарастают возмущения поля скорости и температуры в некотором интервале пространственных масштабов, затем из-за эффекта конкуренции масштабов (возможного только при наличии диссипации) выживает решетка лишь вполне определенного масштаба (рис. 24.16). Шестигранники образуются в результате синхронизации фаз решеток с разной пространственной ориентацией (см. § 24.4). Такая синхронизация возможна в жидкостях, где вязкость (поверхностное натяжение или диффузионные коэффициенты) зависит от температуры. Формальное описание синхронизации различных пространственных мод содержится в § 24.4. Ни масштаб решетки, ни структура ячеек практически не зависят от условий на боковых границах слоя, если его размеры по горизонтали достаточно велики. Что же такое самоорганизация? Мы будем называть самоорганизацией установление в диссипативной неравновесной среде пространственных структур (вообще говоря, эволюционирующих во времени), параметры которых определяются свойствами самой среды и слабо зависят от пространственной структуры источника неравновесности (энергии, массы и т. д.), начального состояния среды и условий на границах. Таким образом, для самоорганизации наиболее принципиальны потеря памяти о начальных условиях и прямая связь параметров структуры со свойствами среды. Как видно из примеров, самоорганизация есть результат развития пространственно неоднородных неустойчивостей с их последующей стабилизацией за счет баланса между диссипативными расходами и поступлением энергии от источника неравновесности. Процесс возникновения самоорганизации напоминает процесс установления (см. скан) Рис. 24.1. Ячеистая конвекция: а — структура ячеек Бенара; б - возникновение и установление роликовой структуры при конвекции Бенара в прямоугольной ячейке (вид сбоку) автоколебаний. Однако результат развития неустойчивости, приводящей к самоорганизации, может быть и чисто «статическим»: возникают пространственные образования, не меняющиеся во времени, — диссипативные структуры (добавим, что они могут быть и стохастическими [12]). И другое отличие — для самоорганизации условия на периферии неравновесной диссипативной среды не столь существенны, как для автоколебаний. Явления самоорганизации даже в рамках нашего определения весьма разнообразны. В их числе можно назвать возникновение диссипативных структур, уединенных фронтов (волн горения [11], волн популяций [16, 7]), импульсов (в нервных волокнах [13, 14] и автокаталитических реакциях [9]), ведущих центров и ревербераторов (сердечная ткань [17], кооперации амеб [10], волны депрессии в тканях мозга и сетчатке глаза [18]) и др. По этой причине у явления самоорганизации не один математический образ (как странный аттрактор для стохастических автоколебаний, или предельный цикл для периодических), а несколько: это предельный цикл — для периодических диссипативных структур; странный аттрактор — для стохастических; сепаратрисы, идущие из одного состояния равновесия в другое, — для распространяющихся фронтов и т. д. Тем не менее многие явления описываются теорией самоорганизации в рамках единых моделей, математически выражающихся нелинейными кинетическими уравнениями диффузного типа:
Здесь и — набор физических (химических и т. д.) переменных, который определяет нелинейную кинетику в отсутствие диффузии, D — матрица коэффициентов диффузии (в общем случае D также зависит от и — нелинейная диффузия).
Рис. 24.2. Зависимости скорости изменения и в «точечной» системе от к в случае беспорогового Конкретное обсуждение явлений самоорганизации мы начнем с анализа уединенных фронтов. Для определенности будем говорить об установлении стационарного распространения пламени. При этом происходит реакция окисления, в ходе которой высвобождается тепло. В процессе горения участвует сравнительно тонкая область, в которой происходит химическая реакция, т. е. область, отделяющая холодное горючее от продуктов сгорания, движется относительно горючего вещества с постоянной скоростью, не зависящей от начальных условии. Фронту волны горения соответствует частное решение системы дифференциальных уравнений в обыкновенных производных для стационарных волн. В фазовом пространстве эти решения изображаются сепаратрисой, соединяющей два состояния равновесия (рис. 24.2), одно из которых соответствует значениям переменных перед фронтом (реакция еще не началась), а другое — за фронтом (реакция закончилась). Для аналитического описания наиболее прост случай одномерного горения (пример — распространение пламени по бикфордову шпуру). Будем считать, что процесс описывается одной переменной и, тогда вместо (24.1) получаем кинетическое уравнение
В уравнении (24.2) Введем «бегущую» переменную
где Впервые такая задача была поставлена и решена в [22] при анализе следующей биологической проблемы. Пусть некоторая большая территория занята определенным биологическим видом с определенной концентрацией таковы, что
Представляют интерес только те интегральные кривые уравнения (24.4), которые на плоскости
Уравнение (24.5) имеет положительные корни при
(Предлагаем читателю самому найти и исследовать характеристическое уравнение для точки При произвольных
распространения стационарной волны [23]. При
|
1 |
Оглавление
|