Главная > Теория обнаружения, оценок и модуляции, Т.3
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

13.5. Краткие итоги рассмотрения целей и каналов с рассеянием по двум параметрам

В этой главе изучались цели и каналы, имеющие рассеяние не только по дальности, но и по скорости (допплеровскому сдвигу). Комплексная огибающая эхо-сигнала в этом случае имела вид

Процесс отражения от цели описывался выборочной функцией комплексного гауссова случайного процесса, который можно охарактеризовать двумя способами:

1. С помощью функции рассеяния или эквивалентных ей функций или

2. Путем описания в распределенных переменных состояния, когда уравнения состояния являются обыкновенными дифференциальными уравнениями, содержащими пространственную переменную X в качестве параметра, а сигнал связан с вектором состояния модуляционным функционалом.

После формулировки модели и обсуждения ее общих характеристик были рассмотрены три области, где встречаются цели с рассеянием по двум параметрам.

В § 13.2 была рассмотрена задача разрешения целей в условиях помех. В этом случае нужный сигнал соответствует нефлуктуирующей точечной цели, а помехи — местным предметам окружающей среды, имеющим рассеяние по двум параметрам. Были произведены анализ обычного и оптимального приемников и сравнение их помехоустойчивости. Установлено, что при использовании обычного согласованного фильтра распределенная помеха входит в модель через двойную свертку функции неопределенности сигнала и функции рассеяния цели. На примерах было показано, что, как и в задаче разрешения дискретных целей, часто важнее правильно выбрать сигнал, чем построить оптимальный приемник.

В § 13.3 были рассмотрены задача обнаружения эхо-сигнала от цели с рассеянием по двум параметрам и задача цифровой связи по каналу с рассеянием по двум параметрам. После формулировки общей задачи было рассмотрено несколько приближенных моделей целей (каналов) с использованием разложения в ортогональный ряд. Назначение этих моделей — свести задачу к виду, удобному для анализа. Модель в виде линии задержки с отводами — наиболее простая в реализации, однако общая модель в форме ортогонального ряда дает некоторые преимущества с точки зрения требуемого объема вычислений. Далее была рассмотрена задача двоичной связи. Для каналов с малой дисперсностью (слабодиспергирующих) были найдены сигналы, позволяющие приблизиться к границе помехоустойчивости, установленной для любой системы связи. Для каналов с большой дисперсностью (сильнодиспергирующих) было установлено, что при использовании простых сигналов, которые были рассмотрены, можно лишь приблизиться к границе помехоустойчивости при больших значениях отношения Чтобы убедиться в правильности наших интуитивных соображений, мы провели подробный анализ помехоустойчивости конкретной системы связи. Было изучено влияние параметров сигнала и параметров функции рассеяния на помехоустойчивость двоичной системы связи. Наконец, были указаны пути распространения полученных результатов на некоторые родственные задачи.

В § 13.4 была рассмотрена задача оценки параметров цели с рассеянием по двум параметрам. Сначала была сформулирована общая задача оценки и отмечено ее сходство с задачей обнаружения, изложенной в § 13.3. Затем внимание было сосредоточено на случае КСМЭ. Подробно были изучены две конкретные задачи — оценки амплитуды и оценки средней скорости.

Существуют две важные задачи, которые не были рассмотрены, но заслуживают упоминания. Первая задача заключается в измерении мгновенного поведения огибающей . С ней мы сталкивались при рассмотрении приемника по схеме оцениватель — коррелятор,

но не обсудили ее полностью. Вторая задача состоит в измерении (или оценивании) функции рассеяния цели или канала. Эту задачу мы совсем не рассматривали. Адекватное рассмотрение указанных задач увело бы нас слишком далеко от обсуждаемой темы; интересующемуся читателю следует обратиться к работам [39 — 52 и 66-69].

Этим завершается рассмотрение целей и каналов с рассеянием по двум параметрам. В следующей главе мы подведем итоги рассмотрения задачи радио- и гидролокации.

13.6. Задачи

(см. скан)

(см. скан)

(см. скан)

(см. скан)

(см. скан)

(см. скан)

(см. скан)

(см. скан)

(см. скан)

(см. скан)

(см. скан)

(см. скан)

(см. скан)

(см. скан)

(см. скан)

(см. скан)

(см. скан)

(см. скан)

(см. скан)

Список литературы

(см. скан)

(см. скан)

(см. скан)

(см. скан)

1
Оглавление
email@scask.ru