Главная > Теория обнаружения, оценок и модуляции, Т.3
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

13.1.2. Модель цели (канала) с рассеянием по двум параметрам в форме дифференциальных уравнений

В введенной ранее модели цели (канала) с рассеянием по двум параметрам предполагается, что эхо-сигналы от различных элементов дальности статистически независимы. При этом ковариационная функция процесса отражения от цели (флуктуаций параметров канала) имеет вид

Во многих случаях, представляющих интерес, преобразование Фурье функции является рациональной функцией частоты . В этих случаях можно построить модель канала с рассеянием по двум параметрам, описываемую в переменных состояния. Заметим, что из (34) следует, что связь между процессами отражения от цели при различных значениях X отсутствует. Поэтому процесс отражения от цели в любой точке (скажем, можно считать

чайным процессом с единственной независимой переменной При этом оказывается возможным непосредственно применять метод представления процессов в переменных состояния, развитый в п. 6.3.3 первого тома. Новым здесь является то, что уравнения состояния будут содержать X в качестве параметра. Другие особенности выяснятся по ходу изложения.

Поскольку сигнал на выходе канала описывается выражением

удобно ввести в рассмотрение новый процесс, определяемый как

Заметим, что есть комплексный гауссов процесс с нулевым средним значением, ковариационная функция которого равна

Ранее канальный процесс (процесс отражения) моделировался нами как случайный процесс, который зависит от времени и пространства. Теперь требуется представить эту временную зависимость переменными состояния. Пространственную зависимость учтем, сделав это представление функцией пространственной переменной . Представление, которое нам необходимо для описания канала с рассеянием по двум параметрам, учитывает пространственную зависимость непосредственно.

Обозначим вектор состояния процесса через Уравнение состояния имеет вид

где

Ковариационная функция вектора состояния в начале интервала равна

Канальный процесс представляется в виде

Отметим, что в данном рассмотрении связь между различными значениями отсутствует. Уравнение состояния записано как уравнение в частных производных, но фактически оно является

обыкновенным дифференциальным уравнением, содержащим X в качестве параметра. Ввиду этой параметрической зависимости можно легко написать ковариационное уравнение. Введем в рассмотрение ковариационную функцию определяемую в виде

Как и прежде, функцию можно связать с функцией соотношением

где переходная матрица, которая является решением уравнения

с начальным условием

Заметим, что эта переходная матрица имеет единственную независимую переменную времени, так как и не являются функциями времени.

Поскольку предполагалось, что канальный процесс стационарен, функция не зависит от времени. Поэтому можно записать

Матрица есть просто решение уравнения

(см. (I - 6.333а)). Заметим, что предположение о стационарности требует, чтобы

Ковариационную функцию канала получим из (37) с учетом (41) и (42):

И на этот раз подчеркнем, что все полученные результаты являются обычными соотношениями в переменных состояния с параметрической зависимостью от Для завершения описания нашей модели

необходимо описать наблюдаемый сигнальный процесс. С учетом (36) из (35) получим

Используя (41) в (50), имеем

Видим, что (51) содержит интеграл по пространственной переменной Наличие этого пространственного функционала является новой особенностью задачи и требует дальнейшего развития изложенной ранее теории переменных состояния. Заметим, что он является линейным функционалом и аналогичен модуляционной матрице Иногда бывает удобно переписать (51) в виде

На этом завершается рассмотрение модели канала с рассеянием по двум параметрам, описываемой дифференциальными уравнениями. Для иллюстрации применяемых методов рассмотрим пример.

Пример [7]. Рассмотрим комплексное уравнение состояния первого порядка

Эти уравнения соответствуют уравнениям (38) — (41) при

Предположим, что

Из (44) и (45) имеем

а из (47)

Подставляя (60) и (61) в (43), а результат — в (49), получаем ковариационную функцию канала в виде

Ее преобразование дает следующую функцию рассеяния канала:

Заметим, что

Функция рассеяния вида (63), рассматриваемая как функция частоты при любом значении , является однополюсным спектром с центральной частотой пиковым значением и шириной на уровне относительно центральной частоты.

Рис. 13.6. Функция рассеяния, определяемая выражениями (65) и (66) [7].

На рис. 13.6 эта функция рассеяния представлена для случая, когда

За исключением ограничений (58), (59) и (64), функции и произвольны. Это допускает большую свободу в выборе даже для модели первого порядка. Например, если

функция пропорциональна X, то функция рассеяния «размазана» в плоскости Можно выбрать так, чтобы получить многомодальную (по ) функцию рассеяния. На рис. 13.7 представлена функция рассеяния которая и многомодальна и «размазана» в плоскости Здесь

Рис. 13.7. Функция рассеяния, определяемая выражениями (67) и (68)

Этот пример иллюстрирует гибкость, достигаемую при использовании модели первого порядка. Используя систему более высокого порядка, можно описать функцию рассеяния, которая является рациональной функцией частоты для каждого значения Чтобы получить многомодальную функцию рассеяния, нужно использовать модель состояния по крайней мере второго порядка.

Точно так же, как и ранее, основное преимущество формулировки задачи в переменных состояния заключается в том, что она позволяет выразить алгоритм оптимального приемника и его помехоустойчивость в такой форме, что фактически можно найти ответ в явном виде. Конкретные примеры этой модели мы рассмотрим в § 13.2 и 13.3.

1
Оглавление
email@scask.ru