Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
5.4.2.3. Устойчивость периодических решений.Устойчивость вынужденных колебаний линейного осциллятора могла быть доказана еще в разд. 5.2.1.3 при помощи энергетических соображений. Сравнивая работу возмущающего воздействия с рассеиваемой в осцилляторе энергией (см. рис. 151), можно было показать, что при определенной стационарной амплитуде уменьшается и снова достигается равновесное состояние. Такое поведение осциллятора характеризует устойчивость рассматриваемого равновесного состояния. Совершенно аналогично можно исследовать поведение нелинейного осциллятора, совершающего вынужденные колебания и выведенного из равновесного состояния. При этом будем исходить из соотношения (5.112), представляющего собой выражение баланса энергии. В данном случае силы демпфирования отсутствуют, так что
и воспользовавшись решением (5.118), энергию, подводимую к осциллятору за счет возмущения, можно выразить следующим образом:
Так как исследуемые здесь колебания симметричны относительно оси абсцисс, достаточно исследовать, например, одну лишь положительную область. Тогда за пределы интегрирования следует принять для антифазных колебаний
для синфазных колебаний
легко установить, что для обеих форм колебаний сохраняется энергетический баланс, т. е. выполняется равенство
Теперь рассмотрим энергетический баланс для возмущенного движения, близкого к стационарному, и возьмем постоянную интегрирования в виде
где (5.117) остается справедливым. Изменение постоянной
Изменение интеграла энергии
Теперь рассмотрим влияние возмущения
Но так как
и
Аналогичным образом из (5.125) для возмущенного синфазного колебания получаем
что
равно
Таким образом, положительное возмущение Совсем иначе происходят колебания при синфазном возмущении. При таком возмущении, приводящем к увеличению амплитуды, от него поступает еще больше энергии. За счет этого амплитуда все более возрастает, так что колебания все больше удаляются от равновесного состояния. Одинаковым образом происходят колебания и при
|
1 |
Оглавление
|