Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
2.2.3.4. Энергетический метод решения уравнений колебаний.Метод энергетического баланса. Вполне приемлемую оценку решений уравнения колебаний
можно получить в том случае, когда влияние демпфирования мало, т. е. сила демпфирования мала по сравнению с восстанавливающей силой и силой инерции, так что максимальная величина члена Для линейно демпфированного осциллятора было показано, что период колебания почти не зависит от силы демпфирования при ее малой величине. Это справедливо и для уравнения общего вида (2.169). Но кроме периода колебания нас интересует уменьшение амплитуды, и здесь можно воспользоваться энергетическим методом, в большинстве случаев дающим достаточно хорошее приближение. Чтобы получить интеграл энергии для (2.169), умножим, как обычно, это уравнение на х и проинтегрируем по времени:
Если ввести величину
то энергетическое соотношение можно привести к виду
Так как при каждом амплитудном значении
Потенциальную энергию
что с учетом (2.172) дает
Соотношения (2.172) и (2.173) применимы только в том случае, когда известна величина AED. Однако в эту величину входит скорость колебания
Эти выражения часто можно применять как хорошее приближение и для нелинейных колебаний. Ожидаемая ошибка будет оставаться малой уже вследствие того, что в этом случае выражение (2.174) для х используется только для расчета влияния демпфирования, малого по предположению. Подставляя (2.174) в интеграл правой части (2.172), получаем
или
Таким образом для любой функции
Для восстанавливающей силы примем
Принимая во внимание выражение (2.176) и полагая
Эта величина в точности совпадает с уменьшением амплитуды, которое было получено в разд. 2.2.3.2 без каких-либо допущений. Приближенная формула (2.175) для потери энергии на преодоление сил демпфирования, полученная здесь из интеграла энергии, похожа на формулу (2.110), которая была выведена для эквивалентного коэффициента восстанавливающей силы
Чтобы определить
из сравнения с (2.175) следует, что
Это выражение, полученное приравниванием выражений энергии (энергетический баланс), можно получить также методом гармонического баланса, использованным при выводе эквивалентного коэффициента восстанавливающей силы. В данном случае оба метода эквивалентны. При помощи (2.177) нелинейная функция Нетрудно убедитьая в том, что если в качестве функции демпфирования взять получаем
Если, кроме того,
Отношение двух последовательных амплитуд определяется по формуле (2.142):
В силу предположения о малости демпфирования
Поскольку
|
1 |
Оглавление
|