Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА ВТОРАЯ. СТАТИСТИЧЕСКАЯ МЕХАНИКА23. ВВЕДЕНИЕПервоочередная задача статистической механики заключается в том, чтобы на основании существующих в настоящее время представлений об атомарном строении материи сделать понятными выявленные в термодинамике закономерности. Впервые подобная задача была успешно решена Максвеллом и Больцманом в развитой ими кинетической теории газов. Она кратко изложена в разделе А. Содержащиеся в нем рассуждения и методы служили прообразом при анализе более общих проблем. Всякий раз, пытаясь дать учению о теплоте теоретическое обоснование, независимо от специальных моделей мы сталкиваемся с очень примечательной ситуацией. В термодинамике физическое состояние материального тела определяется с помощью немногих численных данных, таких, например, как давление, энергия, плотность, скорость и т. д. С другой стороны, для описания микроскопической картины требуется невероятно большое количество данных, как, например, положение и скорость всех атомов в классической теории газов (или в квантовой теории функция Шредингера для соответствующей задачи этому ансамблю. При этом в качестве результатов, имеющих первостепенное значение, будет получен: параметр, который доминирует во всей термодинамике, а именно энтропия, которая оказывается количественной мерой только что упомянутого незнания. Это, без сомнения, один из самых значительных и глубоких выводов всей физики. Он, естественно, приобретает смысл только после точной формулировки, которая может быть получена лишь после проработки последующих разделов. Основной особенностью статистической механики является то, что число микроскопических степеней свободы, по существу определяемое числом Эта особенность теории вероятностей настолько характерна, что мы поясним ее сразу же на простом примере. Пусть газ состоит из
то
Для определения вероятности
которая как раз и представляет собой число различных возможностей выбрать любые
Как и должно быть,
Если мы на мгновение представим себе
Еще раз используя тот же оператор, имеем:
Только теперь подставим
Среднее значение квадрата отклонения
Из вышеприведенных уравнений следует:
Разумеется, при
Как следует ожидать, дисперсия возрастает с возрастанием среднего числа этом мы интересуемся не абсолютным числом молекул, а относительной точностью, с которой устанавливается эта плотность при задании
Хотя абсолютное отклонение очень велико, относительное отклонение с ростом Для многих приложений полезно рассчитать фактическую величину (23 1)
для больших значений С помощью формулы Стирлинга
следовательно,
Нас интересует отклонение
Будем считать
получим, например,
Отсюда, ограничиваясь членами порядка
Соответственно будет иметь место равенство
Вследствие
Если
Как и должно
|
1 |
Оглавление
|