Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
1.4. Характеристики обнаружения сигналов с неизвестной энергией1.4.1. Сигнал с неизвестным энергетическим параметромПростейшим энергетическим параметром является амплитуда, поскольку она входит в сигнал линейно. При обнаружении сигнала, единственным неизвестным параметром которого является амплитуда, асимптотически оптимальный алгоритм обнаружения определяется из (1.42). Найдем вероятности ошибок в этом случае. Если полезный сигнал на входе приемника отсутствует, то согласно
где При наличии сигнала на входе приемника
а безусловная определяется выражением
Соответственно при использовании асимптотически байесовского обнаружителя (1.41) и равных вероятностях наличия и отсутствия сигнала
Безусловную среднюю вероятность ошибки получаем, усредняя
Чтобы оценить влияние незнания амплитуды сигнала на эффективность об наружения, предположим, что амплитуда обнаруживаемого сигнала
В приемнике, асимптотически байесовском для сигнала, неизвестный множитель перед которым может менять знак,
Наконец, при априори известной амплитуде, когда обнаружение выполняется в соответствии с критерием идеального наблюдателя и рис. 1.23 штрихпунктиром, зависимость (1.197) — сплошной и зависимость (1.198) - штриховой линиями. Кривые рис. 1.23 показывают, насколько снижается эффективность обнаружения, если априори неизвестна амплитуда сигнала. При этом наибольшие потери в эффективности обнаружения имеют место, если неизвестный множитель а может менять знак. Пусть теперь реализация наблюдаемых данных при наличии сигнала имеет вид (1.43), т. е. полезный сигнал кроме неизвестной амплитуды содержит
Рис. 1.23. Средняя вероятность ошибки для сигнала с неизвестной амплитудой При наличии полезного сигнала выходной эффект асимптотически оптимального обнаружителя Найдем характеристики обнаружения сигнала
для всех При отсутствии полезного сигнала на входе приемника
где
Следовательно,
и функцией корреляции (1.200). Согласно (1.53) определение вероятности ложной тревоги сводится к нахождению вероятности превышения порога с реализацией выходного сигнала оптимального приемника Обозначим
так что вероятность ложной тревоги при обнаружении сигнала с неизвестным энергетическим параметром определяется выражением
Найдем
находим
Подставляя это выражение в (1.202), получаем приближенное значение вероятности ложной тревоги. Заметим, что при приеме сигнала с неизвестным неэнергетическим параметром формула (1.202) переходит в (1.90). Действительно, в силу известных свойств сигнальной функции неэнергетического параметра
где — истинное значение неизвестного параметра принятого сигнала. Как и ранее (1.12),
Поскольку
Таким образом, при обнаружении сигнала с неизвестным энергетическим параметром вероятности ошибок могут быть приближенно рассчитаны по формулам (1.202), (1.203). Точность этих формул возрастает с увеличением
|
1 |
Оглавление
|