§ 27. Краткие исторические сведения. (Из истории отрицательных чисел.)
Ещё несколько тысяч лет назад потребности в измерении привели к расширению множества натуральных чисел, которыми до тех пор пользовались люди. Были введены новые, дробные числа, с помощью которых стало возможно производить измерения (длин, площадей, веса и пр.) с любой степенью точности, допускаемой инструментами.
Не так обстояло дело с отрицательными числами. В практической деятельности людей не ощущалась потребность во введении отрицательных чисел, и они прочно вошли в математику и получили применение лишь в XVII веке.
Но в самой математике потребность в расширении числового множества путём введения новых, отрицательных чисел ощущалась уже давно, и по мере развития математической науки эта потребность становилась всё более настоятельной.
Так, ещё в III веке греческий математик Диофант при выполнении некоторых преобразований, например
фактически уже пользовался правилом умножения отрицательных чисел, которое он выражал так: «Отнимаемое, умноженное на прибавляемое, даёт в результате отнимаемое. Отнимаемое, умноженное на отнимаемое, даёт в результате прибавляемое».
Из этой формулировки видно, что Диофант ещё не признавал самостоятельного существования отрицательных чисел; для него они были прежними числами, «отнимаемыми» от какого-либо другого числа. Поэтому, если, например, при решении уравнения получался отрицательный корень, Диофант его просто отбрасывал как «недопустимый».
Но уже индийский учёный Брамагупта (VII век) в своих вычислениях свободно пользовался отрицательными числами и давал им наглядное истолкование. Он обозначал имущество положительными числами, а долг — отрицательными.
В этой наглядной форме он давал и правила действий с рациональными. числами, например: «Сумма двух имуществ — имущество. Сумма двух долгов — долг. Сумма имущества и долга равна их разности, а если они равны, то нулю» и т. д.
Индийский же математик Бхаскара (XII век) пользуется степенью отрицательного числа. В его сочинении «Венец системы» говорится:
«Квадрат как положительного, так и отрицательного числа даёт положительное число, например:
В Европе математики XVI века хотя и пользовались иногда отрицательными числами, всё же называли их сложными» и «неясными», «меньшими, чем ничто» и т. п.
Лишь голландский математик Жирар (XVI—XVII века) пользуется отрицательными числами наравне с положительными. Так, решая уравнение
он приводит три его корня:
Бурное развитие естествознания и техники в XVII веке предъявляло повышенные требования и к математике, требовало её дальнейшего развития и усовершенствования математического аппарата. Неприменение отрицательных чисел создавало излишние трудности в математических вычислениях и преобразованиях. Начиная с XVII века отрицательные числа прочно входят в математику и находят практические применения. Французский философ и математик Декарт даёт наглядное истолкование чисел с помощью точек числовой оси. Он пользуется отрицательными числами для графического изображения различных процессов и алгебраических выражений.