Главная > Алгебра. Учебник для 6-8 классов
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 98. Простейшие преобразования.

1. Вынесение множителей за знак квадратного корня.

Пусть дано выражение . Мы можем этот корень представить в более простом виде, применив к нему теорему об извлечении корня из произведения (§ 97):

Точно так же

Такое преобразование называется вынесением множителя за знак корня.

В результате применения этого преобразования данное выражение упрощается и часто сокращаются требуемые вычисления. В этом можно убедиться на следующих примерах.

Пр и мер 1. Вычислить с точностью до 0,01 выражение

Вычислим каждый из корней с точностью до 0,01:

Нам пришлось извлечь квадратный корень из трёх чисел, и притом мы не можем быть уверены, что результат действительно даст величину выражения с точностью до 0,01 (для уверенности в этом нужно было бы вычислить корни с точностью большей, чем заданная).

Попробуем упростить данное выражение, вынося за знак радикала те множители, которые возможно:

Итак, после преобразования нам придётся извлечь квадратный корень только из одного числа.

Вычислив его с точностью до 0,01, найдём:

Теперь видно, что в первом вычислении мы сделали ошибку на одну сотую, то есть получили результат не с заданной точностью.

Пример 2. Вычислить выражение

Подставив в данное выражение получим:

Нам придётся извлечь корень из шестизначного числа.

Мы значительно упростим вычисления, если предварительно вынесем за знак корня те множители, которые возможно. Будем иметь:

Подставив теперь легко найдём:

Во всех предыдущих примерах подкоренное выражение мы разлагали на множители, выделяя такие, показатель которых делится на два, и извлекали из них корень. В дальнейшем надо приобрести навык сразу выносить нужные множители за знак корня, не прибегая к предварительному разложению на множители подкоренного выражения.

Пример 3.

Как видно из примеров, для вынесения множителей из-под знака квадратного корня достаточно показатель каждого множителя разделить на два и записать перед знаком корня этот множитель с показателем, равным полученному частному, а под знаком корня тот же множитель с показателем, равным полученному остатку.

В предыдущем примере .

2. Внесение множителей под знак квадратного корня.

Иногда бывает полезно, наоборот, подвести под знак корня множители, стоящие перед ним.

Пусть, например, требуется вычислить с точностью до 0,001 выражение Вычислив с точностью до 0,001 и умножив результат на 20, получим:

Заранее можем сказать, что результат не соответствует заданной точности, так как, умножив приближённое число 2,646 на 20, мы увеличили в 20 раз и ошибку.

Чтобы получить ббльшую точность, возьмём с точностью до 0,0001. Получим:

Но мы не можем и теперь быть уверены, что достигли требуемой точности.

Произведём вычисление другим способом. Представим данное выражение в таком виде:

Вычислив с точностью до 0,001, получим:

Такоза действительная величина данного выражения, вычисленная с точностью до 0,001.

Рассмотренное преобразование называется внесением множителя под знак корня.

Приведённый пример показывает целесообразность в некоторых случаях такого преобразования.

Чтобы внести под знсис квадратного корня стоящие перед ним множители, достаточно возвести эти множители в квадрат и подкоренное выражение умножить на полученный результат.

Примеры.

В двух первых примерах сначала множитель, стоящий перед знаком корня, был подведён под знак корня, затем произведено умножение.

В третьем примере обе эти операции были выполнены сразу.

3. Приведение подкоренного выражения к целому виду.

Если подкоренное выражение дробное, то часто бывает целесообразно привести его к целому виду, или, как говорят, освободить подкоренное выражение от знаменателя.

Покажем на примерах, как это делается.

Пр имер 1.

Чтобы из знаменателя подкоренного выражения можно было извлечь корень, умножим числитель и знаменатель этого выражения на а. Получим:

Пример 2.

Умножив числитель и знаменатель подкоренного выражения на , извлечём квадратный корень из знаменателя. По сокращении получим:

Значит, чтобы привести подкоренное выражение к целому виду, достаточно его числитель и знаменатель умножить на такое выражение, чтобы показатели всех сомножителей в знаменателе делились на два; после этого извлечь корень из знаменателя.

Примечание. Во всех предыдущих примерах буквы обозначали неотрицательные числа; если это условие не выполнено, то надо поступать так, как пояснено на следующих иримерах.

Пример 1.

вынести а за знак корня.

Мы знаем, что при

поэтому

При любом а верно такое равенство:

Пример 2. Внести множитель х под знак корня

Если х — отрицательное число, то , где — положительное число; значит,

Так, в частности,

1
Оглавление
email@scask.ru