Главная > Алгебра. Учебник для 6-8 классов
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 100. Краткие исторические сведения.

Возведение в квадрат. Практические задачи (например, вычисление площади квадратного участка) уже в глубокой древности приводили к потребности находить квадраты чисел. Очевидно, эта потребность возникала настолько часто, что, так же как и в настоящее время, составлялись специальные таблицы квадратов натуральных чисел.

Особый интерес представляет таблица квадратов чисел от 1 до 60, найденная при раскопках в Вавилоне и составленная около четырёх тысяч лет назад.

Приведём выдержки из этой таблицы в современной записи:

Эта запись становится понятной, если первые цифры, стоящие до точки с запятой, считать единицами второго разряда, содержащими 60 единиц первого разряда.

Действительно, тогда мы имеем:

Таким образом, эта таблица является одним из свидетельств употребления в древнем Вавилоне шестидесятеричной системы счисления.

В более поздние времена эта система счисления перешла из Вавилона в другие страны. Она применялась главным образом в астрономических вычислениях.

Извлечение корня. К извлечению квадратного корня также ещё в древние времена приводили задачи практического характера (например, выделение квадратного участка земли заданной площади, решение задач, приводящих к квадратным уравнениям).

Так, в китайской математической рукописи, написанной во II в. до нашей эры по ещё более древним источникам, уже имеется описание способа нахождения квадратных корней.

Умели извлекать квадратные корни из чисел и индийцы ещё в

IV—V вв. нашей эры. Индийский математик XII в. Бхаскара отмечал, что положительное число имеет два квадратных корня — положительный и отрицательный и что нельзя извлечь квадратный корень из отрицательного числа.

Извлечение квадратного корня (например, при решении квадратных уравнений) встречается и в сочинении знаменитого среднеазиатского математика аль-Хорезми.

Интересен способ, по которому древние вавилоняне находили приближённые квадратные корни ещё за две тысячи лет до нашей эры. В современной алгебраической записи этот способ может быть выражен формулой

Пример 1. Найти 28. Так как , то получим по формуле (1):

Так как , то приближённый корень получен с достаточно большой точностью.

Пример

Проверка.

Если правую часть равенства (1) возведём в квадрат, то получим:

Таким образом, квадрат найденного приближённого корня отличается от подкоренного числа на величину Отсюда следует, что найденный по формуле (1) корень будет тем точнее, чем меньше число по сравнению с а.

1
Оглавление
email@scask.ru