Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 44. Титрование кислот и оснований в неводных растворахИонные произведения растворителей и константы ионизации кислот и оснований в неводных растворах. Явления, наблюдающиеся в неводных растворах, имеют исключительно важное значение в аналитической химии. В неводных средах наблюдается неравномерное изменение отношений
где Точность кислотно-основного титрования определяется указанными отношениями. Чем меньше эти отношения, тем выше точность титриметрического определения. Значение ионных произведений некоторых растворителей приведены в табл. 21. ТАБЛИЦА 21. Ионные произведения (константы автопротолиза) некоторых растворителей
Данные табл. 21 показывают, что ионные произведения таких растворителей, какими являются безводные уксусная, муравьиная и серная кислоты, больше ионного произведения воды. Особенно большой константой автопротолиза отличается безводная серная кислота Из данных табл. 22 видно, что в среде безводной уксусной кислоты наиболее сильной является хлорная кислота. ТАБЛИЦА 22. Константы ионизации кислот в растворе безводной уксусной кислоты
Такие сильные в водном растворе кислоты, какими являются серная, хлористоводородная и азотная, становятся в среде безводной уксусной кислоты слабыми. Изменение относительной силы кислот и оснований в зависимости от растворителя. Иллюстрацией изменения относительной силы кислот могут служить данные для хлористоводородной и хлоруксусной кислот:
Иллюстрацией изменения отношения Для муравьиной кислоты
Для мочевины
Для мочевины в водной среде
Поэтому в воде
В среде безводной муравьиной кислоты
Из этого следует, что в среде безводной муравьиной кислоты происходит увеличение как Аналогично в среде основных растворителей [подобных диметилформамиду — Устранение помех, вызываемых сольволизом. Трудности, возникающие при титровании слабых оснований и слабых кислот в водных растворах, можно устранить, применяя соответствующий неводный растворитель. Например, константа гидролиза (см. книга 1, гл. II, § 13)
или, в общем виде, константа сольволиза равна:
Сольволиз можно подавить или усилить, применяя растворитель, отличающийся соответствующим значением Например, заменяя воду абсолютным спиртом, Таким образом, представляется возможность устранить многие помехи, встречающиеся при анализе водных растворов, и использовать неводные среды в тех случаях, когда применение водных растворов невозможно. Применение неводных растворов для кислотно-основного титрования. В настоящее время неводные среды используют в аналитической практике для титрования разнообразных неорганических и органических веществ и для дифференцированного (раздельного) титрования многокомпонентных смесей солей, кислот и оснований» Благодаря этому возможно титровать: не только сильные кислоты и основания, но и слабые и очень слабые кислоты и основания; смеси сильных кислот, смеси сильных оснований; смеси сильных и слабых кислот, смеси сильных и слабых оснований; смеси слабых и очень слабых кислот, смеси слабых и очень слабых оснований; смеси сильных, слабых и очень слабых кислот; смеси сильных оснований и солей слабых кислот; смеси сильных кислот и солей слабых оснований; смеси свободных и связанных кислот; соли неорганических и органических кислот; вещества, не содержащие водорода и не являющиеся донорами или акцепторами протонов, но являющиеся (по Льюису) кислотами или основаниями и т. д. Вещества, определяемые в неводных растворах. Быстрое развитие методов неводного титрования привело к тому, что уже в настоящее время можно количественно определять в неводных растворах гораздо больше веществ, чем в водной среде. Так, в соответствующих неводных средах можно титровать любые кислоты и основания, В водной среде, вследствие «нивелирующего эффекта» воды, невозможно получить два или несколько изгиба кривой титрования смеси двух или нескольких кислот или оснований до тех пор, пока величины их
Рис. 50. Кривые потенциометрического титрования многокомпонентных смесей кислот в среде метилэтилкетона. При титровании смесей кислот в среде неводных растворителей наблюдается несколько скачков титрования. Например, при титровании смеси хлористоводородной и муравьиной кислот в Как показали наши исследования, в среде метилэтилкетона могут быть оттитрованы бензольно-метаноловым раствором гидроокиси тетраэтил аммония не только индивидуальные сильные, слабые и очень слабые кислоты, но и Их двух-, трех-, четырех-, пяти- и шести компонентные смеси, которые не могут быть оттитрованы в водных растворах (рис. 50). При титровании двухосновных кислот в среде метилэтилкетона получается два скачка титрования даже у таких кислот, у которых первые и вторые константы диссоциации в водных растворах мало отличаются друг от друга, например у щавелевой Все это говорит о значительных преимуществах методов титрования в неводных средах по сравнению с титрованием в водных растворах. Особенности титрования в неводных средах. Быстрое развитие методов титрования в неводных средах объясняется многими их достоинствами: 1. Титрование в неводных средах представляет собой очень простой, быстрый и удобный метод количественного анализа многих неорганических, органических и элементорганических соединений. 2. Методы титрования в неводных растворах дают возможность с большой аналитической точностью определять многочисленные вещества, которые при титровании в водной среде не дают резких конечных точек титрования. 3. Одним из важнейших преимуществ методов неводного титрования является то, что они позволяют определять не только растворимые, но и нерастворимые в воде соединения, а также вещества, разлагаемые водой или образующие в водных растворах стойкие нерасслаиваемые эмульсии. 4. Методы титрования в неводных средах могут быть применены для титрования как бесцветных, так и окрашенных растворов. 5. Титрование неводных растворов может проводиться индикаторным, потенциометрическим, кондуктометрическим, амперометрическим и другими физико-химическими методами. 6. При методах неводного титрования во многих случаях не нужно предварительно разделять анализируемые вещества и отделять сопутствующие им примеси или наполнители. 7. Вследствие небольшого, как правило, поверхностного натяжения органических растворителей размеры капель неводных жидкостей меньше размеров капель водных растворов, благодаря чему повышается точность титрования по сравнению с точностью титрования водных растворов. 8. Использование неводных растворителей в аналитической практике дает возможность расширить области их применения в других методах анализа (осаждения, комплексообразования, окисления — восстановления, хроматографии, электрометрических методах и т. д.) и увеличить ассортимент веществ для приготовления титрованных растворов, пригодных для титрования как мономерных, так и полимерных соединений.
|
1 |
Оглавление
|