Главная > Теоретическая физика. Т. X. Физическая кинетика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Задача

Определить коэффициент поглощения звука в бозе-жидкости при частотах , где - частота столкновений квазичастиц. Температура предполагается настолько низкой, что практически все квазичастицы являются фононами (Л. Ф. Андреев, И. М. Халатников, 1963).

Решение. В рассматриваемых условиях можно пренебречь интегралом столкновений в уравнении (77,1). Положим -малые поправки к равновесным плотности жидкости и функции распределения фононов) и линеаризуем уравнения (77,1), (77,6) и (77,12) по малым величинам Предполагая все эти величины пропорциональными. получим уравнения

Здесь использованы термодинамические соотношения

где - скорость звука при ; индекс здесь и ниже опускаем.

Ввиду малого числа фононов при температурах вблизи нуля, выражения в правых сторонах уравнений (1—3) представляют собой малые поправки. Опустив их вовсе, получим из уравнений (2) и (3)

В-следующем приближении подставляем (4) в правую сторону уравнения (1) и находим

(5)

( - угол между ). Закон дисперсии фононов пишем в виде

с учетом следующего, после линейного, члена разложения (для жидкого гелия при обычных давлениях что означает неустойчивость фононов по отношению к самопроизвольному распаду).

Наличие в (5) «резонансного» знаменателя приводит (см. ниже) к появлению при интегрировании большого логарифмического множителя. Ограничившись «логарифмической» точностью, пренебрегаем в правой стороне уравнения (3) членом с не содержащим такого знаменателя. Исключив затем v из уравнений (2) и (3), получим окончательно следующее дисперсионное уравнение:

где

Мнимая часть интеграла по определяется обходом полюса (полюс находится в области интегрирования, если . Вещественную же часть вычисляем с логарифмической точностью, обрезая интегрирование снизу при а сверху при . Левую сторону уравнения (6) пишем в виде

где — коэффициент поглощения, а — поправка к скорости звука . Вычисление интеграла приводит к результату

где — фононная часть нормальной плотности жидкости. Частотная и температурная зависимости у совпадают, естественно, с найденными в § 73.

1
Оглавление
email@scask.ru