Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА IX. МЕТАЛЛЫ§ 78. Остаточное сопротивлениеКинетические свойства металлов значительно сложнее, чем у диэлектриков, уже ввиду существования в них квазичастиц различных родов электронов проводимости и фононов. Перенос электрического заряда осуществляется, разумеется, электронами проводимости. Перенос же тепла осуществляется как электронами, так и фононами. Фактически, однако, в достаточно чистых металлах электроны играют основную роль и в теплопроводности, прежде всего ввиду того, что их скорость (скорость Электроны проводимости испытывают столкновения различных типов — друг с другом, с фононами, с примесными атомами (и другими дефектами решетки). Частота столкновений первых двух типов убывает с уменьшением температуры. Поэтому при достаточно низких температурах определяющую роль в кинетических явлениях играет рассеяние электронов на примесях. Эту температурную область называют областью остаточного сопротивления. С нее мы и начнем изучение кинетики металлов. Связь электрического тока j и диссипативного потока энергии q в металле с электрическим полем Е и градиентом температуры записывается в виде соотношений (44, 12—13):
В таком виде они относятся к кристаллам кубической симметрии, что и будет предполагаться, для простоты, везде ниже. Для кристаллов не кубической симметрии коэффициенты а,
Все сказанное в § 74 о кинетическом уравнении для ферми-жидкости в значительной мере остается в силе и для электронной жидкости в металле. Роль импульса квазичастиц играет теперь их квазиимпульс, а ферми-поверхность имеет, вообще говоря, сложную форму, свою для каждого конкретного металла. Кинетические коэффициенты металла вычисляются в принципе с помощью линеаризованного кинетического уравнения
где
и кинетическое уравнение принимает вид
Плотность тока и плотность диссипативного потока энергии даются интегралами
(вычисляя q как поток кинетической энергии Характерной особенностью рассеяния электронов проводимости на атомах примесей является его упругость. Ввиду большой массы атомов и их «привязанности» к решетке, энергию электрона при столкновении можно считать не меняющейся. Покажем, что уже одного только предположения об упругости рассеяния достаточно, чтобы связать простой формулой электро- и теплопроводность металла. Для этого заметим, что оператор упругих столкновений не затрагивает зависимости функции
где
Вычисленная по распределению (78,6) плотность тока
Из первого члена находим тензор проводимости
В кристалле кубической симметрии
или, преобразовав интеграл согласно (74,18—20),
Интегрирование в Аналогичным образом, из второго члена в (78,8), сравнив его с (78,1) находим
где обозначено
Функция
экспоненциально убывает при
При подстановке в (78,11) интеграл от первого члена обращается в нуль ввиду нечетности подынтегрального выражения по
Интеграл
использовав также (78,10), получим
По порядку величины Положим теперь
Здесь достаточно положить
Сравнив это выражение с (78,3) и (78,10) мы видим, что
Указанная выше оценка а показывает, что член
— закон Видемана—Франца. Снова подчеркнем, что в выводе этого соотношения использована лишьупругость рассеяния электронов проводимости. Проследив за выводом» легко также заметать, что предположение кубической симметрии лишь упрощало запись формул. В общем случае произвольной симметрии кристалла такая же связь (78,13) имеет место между тензорами Для определения температурной зависимости каждого из коэффициентов
Множители Линеаризация интеграла столкновений сводится к замене разности
Это уравнение не содержит температуры. Поэтому не будет зависеть от температуры и его решение Для грубой количественной оценки остаточного сопротивления можно воспользоваться элементарной формулой (43,7), положив в ней (для электронов в металле)
где
К сказанному в этом параграфе надо сделать еще следующее замечание. Общее условие применимости кинетического уравнения для ферми-жидкости требует, чтобы квантовая неопределенность энергии электрона была мала по сравнению с шириной
зависящим от концентрации примесей. В действительности, однако, такое ограничение отсутствует (Л. Д. Ландау, 1934). Дело в том, что ввиду закрепленности положений примесных атомов и упругости рассеяния электронов на них, вся задача о вычислении электрического тока может быть сформулирована в принципе как квантовомеханическая задача о движении электрона в некотором заданном сложном, но потенциальном внешнем поле. Для состояний электрона, определенных как стационарные состояния в этом поле, энергия не имеет неопределенности; при
|
1 |
Оглавление
|