Главная > Теоретическая физика. Т. X. Физическая кинетика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 50. Кинетическое уравнение для релятивистской плазмы

Если скорости частиц (электронов) в плазме не малы по сравнению со скоростью света, кинетическое уравнение должно быть записано с учетом релятивистских эффектов (С. Т. Беляеву Г. И. Будкер, 1956).

Покажем предварительно, что функция распределения в фазовом пространстве, является релятивистски инвариантной величиной. Для этого заметим, что пространственная плотность частиц и плотность их потока, т. е. интегралы

должны составлять 4-вектор (ср. II, § 28). Имея в виду, что в релятивистской механике скорость частицы с импульсом и энергией есть можно записать этот 4-вектор в виде

где -импульс. Но выражение является 4-скаляром (см. II, § 10). Ясно поэтому, что из 4-векторности интеграла (50,1) следует, что функция f - 4-скаляр.

Переходя к выводу кинетического уравнения, замечаем, что произведенные в § 41 вычисления остаются в силе и в релятивистском случае вплоть до выражения (41,3-4) для плотности потока в импульсном пространстве. Необходимо лишь вычислить заново величины

Величина здесь по-прежнему относительная скорость двух частиц. Напомним, однако, что в релятивистской механике она определяется как скорость одной частицы в системе покоя другой и, вообще говоря, не сводится к разности (см. II, § 12).

Выясним, прежде всего, трансформационный характер этих величин. Произведение

есть число актов рассеяния, происходящих в объеме в течение времени между двумя частицами с импульсами в заданных интервалах по своему определению это число есть инвариант. Переписав его в виде

и заметив, что последние пять множителей (отделенных точками) инвариантны, заключаем, что и первый множитель, есть инвариант.

Отсюда в свою очередь следует, что интегралы

образуют симметричный 4-тензор. Величины же (50,2) связаны с пространственными компонентами этого 4-тензора согласно

Вычислим сначала 4-тензор (50,3) в системе отсчета, в которой одна из частиц (скажем, частица ) покоится. Релятивистское сечение резерфордовского рассеяния частиц на покоящихся (до столкновения) частицах при малых углах рассеяния имеет вид

Такое же вычисление, как при выводе (41,8), приводит к следующему выражению для пространственных компонент тензора (50,3):

Остальные же компоненты надо считать равными нулю:

Действительно, изменение энергии частиц при столкновении в рассматриваемой системе отсчета есть величина второго порядка по малому углу рассеяния; поэтому оказались бы величинами третьего или четвертого порядка малости, между тем как весь вывод интеграла столкновений производится лишь с точностью до величин второго порядка.

Из (50,6-7) имеем

Этот 4-скаляр можно записать в инвариантном виде, заметив, что в системе покоя частицы имеем

где -скорости обеих частиц.

Поэтому

Из (50,6-7) находим также, что

а ввиду релятивистски инвариантного вида этих равенств они справедливы и в любой системе отсчета.

Выражение 4-тензора справедливое в произвольной системе отсчета, должно, очевидно, быть симметричным по отношению к обеим частицам. Общий вид такого -тензора, зависящего только от 4-векторов , есть

где — скаляры. Определив последние из условий (50,8-9), получим

(50,10)

Наконец, взяв пространственную часть этого 4-тензора в произвольной системе отсчета, получим окончательно следующее выражение для величин входящих в интеграл столкновений:

(50,11)

где

— лоренцевы множители для обеих частиц. Отметим, что, несмотря на свой более сложный (чем в нерелятивистском случае) вид, трехмерный тензор (50,11) по-прежнему удовлетворяет соотношениям

(50,12)

Для оценки кулоновского логарифма заметим, что в релятивистском случае имеет место борновская ситуация; Поэтому для и -столкновений

(50,13)

Для -столкновений надо заменить на (если ионы тоже релятивистские) или же пользоваться обычными нерелятивистскими выражениями.

Кинетическое уравнение с кулоновским интегралом столкновений имеет смысл до тех пор, пока резерфордовское рассеяние является главной причиной изменения импульса и энергии электрона. Конкурирующим процессом здесь является тормозное излучение (а при наличии в плазме заметного числа фотонов — также и эффект Комптона). Сечение (транспортное) резерфордовского рассеяния имеет порядок величины

Сечение же тормозного испускания фотонов с энергией :

(ср. IV, (93,17)).

Эти сечения сравниваются при

Задачи

1. Найти скорость передачи энергии от электронов с температурой к ионам с температурой

Решение. Вплоть до (42,3), произведенные в § 42 вычисления остаются в силе. Величины же берем из (50,4), (50,6), положив v и с:

В результате находим

Выразив энергию ультрарелятивистских электронов через их температуру согласно (см. задачу в V, § 44), получим

2. Найти электропроводность релятивистской лоренцевой плазмы. Решение. После пренебрежения -столкновениями и перехода к пределу ход решения в релятивистском случае совпадает с решением нерелятивистской задачи в § 44. Для поправки к функции распределения в постоянном электрическом поле снова получается

(ср. (44,5)), с той лишь разницей, что частота столкновений определяется теперь релятивистским сечением резерфордовского рассеяния:

Вычислив ток как интеграл получим для электропроводности

В ультрарелятивистском случае , так что

1
Оглавление
email@scask.ru