Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Глава I. ПАРАДОКСЫ НЕВЯЗКОГО ТЕЧЕНИЯ§ 1. Теоретическая гидродинамикаТеоретическая (рациональная) гидродинамика стремится приближенно предсказать движение реальной жидкости путем решения краевых задач для соответствующих систем дифференциальных уравнений в частных производных. При составлении этих уравнений в качестве аксиом принимают законы движения Ньютона. Предполагается также, что рассматриваемая жидкость (обычная жидкость или газ) всюду непрерывна и что на любую часть поверхности действует вполне определенное давление или какое-либо другое внутреннее напряжение (сила, приходящаяся на единицу площади), которое, по крайней мере локально, является дифференцируемой функцией координат, времени и направления. Наконец, устанавливается связь этих напряжений с движением жидкости посредством введения различных параметров, характеризующих данное вещество (плотность, вязкость и т. д.), и функциональных зависимостей (закон адиабатического сжатия и т. п.). Исходя из таких допущений, математики составили системы дифференциальных уравнений для различных идеализированных жидкостей (несжимаемой невязкой, сжимаемой невязкой, несжимаемой вязкой и т. д.). Для того чтобы получить вполне определенные, или корректно поставленные, задачи для таких дифференциальных уравнений, необходимо еще задать соответствующие краевые условия, относящиеся либо к начальному состоянию движения, либо к движению стенок и препятствий, ограничивающих течение жидкости, либо и к тому, и к другому. Теоретическая гидродинамика включает в себя изучение краевых задач, которые получаются в результате сочетания этих краевых условий с дифференциальными уравнениями для идеализированных жидкостей. Математику легко убедить себя в том, что теоретическая гидродинамика в основном непогрешима. Так, Лагранж писал в 1788 г.: «Мы обязаны Эйлеру первыми общими формулами для движения жидкостей... записанными в простой и ясной символике частных производных... Благодаря этому открытию вся механика жидкостей свелась к вопросу анализа, и будь эти уравнения интегрируемыми, можно было бы в любом случае полностью определить движение жидкости под воздействием любых сил...» Многие из величайших математиков, от Ньютона и Эйлера до наших дней, штурмовали задачи теоретической гидродинамики, веря в это. И в их исследованиях, часто вдохновляемых физической интуицией, были введены некоторые из наиболее важных понятий теории уравнений в частных производных: функция Грина, вихревая линия, характеристика, область влияния, ударная волна, собственные функции, устойчивость, «корректность» задачи — таков неполный список. Однако краевые задачи теоретической гидродинамики чрезвычайно трудны, и продвижение в этой области шло бы гораздо медленнее, если бы строгая математика не дополнялась различными правдоподобными интуитивными гипотезами. Наиболее плодотворными среди них были следующие. (A) Определяя, какие физические переменные необходимо рассматривать, можно полагаться на интуицию. (B) Эффект малых воздействий мал, а эффект бесконечно малых воздействий бесконечно мал. (C) Симметрия воздействия обусловливает симметрию эффекта. (D) Топологию течения можно уловить интуитивно. (E) Операции анализа применимы без ограничений: функции, рассматриваемые в теоретической гидродинамике, можно свободно интегрировать, дифференцировать, представлять в виде рядов (Тейлора, Фурье) или интегралов (Лапласа, Фурье). (F) Математические задачи, поставленные на основе интуитивных физических представлений, считаются корректными. Приведенные правдоподобные предположения обычно принимаются без оговорок, как сами собой разумеющиеся. Первые две главы этой книги посвящены главным образом подробному исследованию их приемлемости.
|
1 |
Оглавление
|