Главная > Гидродинамика: Методы, факты, подобие
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 67. Связь с теорией групп

Ясно, что математические уравнения можно проверить на инвариантность не только относительно «изменений масштаба», описываемых посредством соотношений (22), но и относительно многих других преобразований. Например, все уравнения физики инвариантны относительно переноса и поворота осей

координат — известный принцип, который весьма существен при математическом исследовании большинства физических задач. В некоторых частных случаях можно воспользоваться инвариантностью относительно конформных и афинных преобразований (см.§ 74).

Вообще говоря, инспекционный анализ применим к любой группе преобразований. Под группой преобразований мы разумеется, понимаем (см. прим. 1) на стр. 122) множество преобразований, содержащее тождественное и все обратные преобразования и произведения любых двух своих элементов.

Наше утверждение основывается на логической аксиоме, о которой шла речь в § 1, гипотеза и в § 26, а именно: если гипотезы, теории инвариантны относительно группы то инвариантны относительно и их следствия. Обратно, множество всех взаимно однозначных преобразований, оставляющих без изменения какую-либо систему уравнений, образует группу.

Самой важной группой в механике после «группы подобия» преобразований вида (22) является десятипараметрическая группа Галилея — Ньютона. Эта группа порождается трехпараметрической подгруппой пространственных переносов

однопараметрической подгруппой переносов отсчета времени

трехпараметрической подгруппой поворотов пространства

где наиболее общая квадратная ортогональная матрица третьего порядка, и трехпараметрической подгруппой группы преобразований к осям, движущимся поступательно с постоянной скоростью

Теперь легко проверить, что три закона движения Ньютона инвариантны относительно преобразований (24) — (27) и что эти

преобразования не наменяют определений таких физических параметров, как плотность, вязкость и т. д. (предполагается, что масса остается неизменной). Следовательно, теоретическая механика Ньютона инвариантна как относительно группы Галилея-Ньютона, так и относительно группы преобразований (22) динамического подобия. Этот принцип был подтвержден на опыте многими способами с очень большой точностью, за исключением тех случаев, когда скорости движения сравнимы со скоростью света.

1
Оглавление
email@scask.ru