Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 66. Инспекционный анализВ ньютоновой континуальной механике можно производить любые изменения типа (1) в масштабах длины, массы и времени, чего нельзя сказать о релятивистской и квантовой механиках. И, по-видимому, можно быть уверенным, что законы ньютоновой механики достаточно точно описывают поведение реальных жидкостей в обычных условиях. Хотя подобные изменения масштаба могут существенно повлиять на такие свойства вещества, как плотность и вязкость, диапазон плотности и вязкости реальных жидкостей настолько велик, что это влияние обычно остается незаметным. Выделенный выше курсивом принцип можно доказать не только экспериментально на моделях, но его можно также вывести теоретически из основных уравнений гидромеханики. Этот вывод основывается на простом мета-математическом принципе: если какая-либо система математических уравнений инвариантна относительно некоторой группы, то то же самое справедливо для всех следствий из этих уравнений. Применительно к скалярным преобразованиям (1), указанным принципом фактически пользовались Фурье, Стокс и другие пионеры исследования анализа размерностей, чтобы проверить правильность своих рассуждений. Этот метод был отчетливо осознан Рэлеем, когда он ссылался на «подобие»; преимущества этого метода признавал также Бриджмен, который писал: «Преимущество (анализа размерностей) в том, что он быстро приводит к результату, но... он не дает такой полноты информации, которую можно было бы получить с помощью... детального анализа» и «анализ размерностей с физической точки зрения не столь поучителен, как условие подобия». Принцип «динамического подобия» для движений жидкости обычно формулируется следующим образом. Определение. Два течения жидкости
Легко проверить, являются ли уравнения гидродинамической теории инвариантными относительно преобразований вида (22). Именно это было сделано при доказательстве теоремы 2 из § 21. Из уравнений, подлежащих проверке, наиболее важны уравнения Навье — Стокса для несжимаемой вязкой жидкости:
Было показано, что эти уравнения инвариантны при отсутствии свободной поверхности, если для величин В § 70—73 будут доказаны различные аналоги теоремы 2 из § 21 применительно к сжимаемому невязкому течению, сжимаемым струйным течениям, течениям с кавитацией и т. д. Но сначала мы рассмотрим инспекционный анализ вообще, для того чтобы лучше уяснить себе его отношение к традиционному анализу размерностей.
|
1 |
Оглавление
|