Главная > Динамика тела, соприкасающегося с твердой поверхностью
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

4. Геометрическая интерпретация усредненного движения.

Сделаем в уравнениях (5.28) замену переменных по формулам

где — косинусы углов между вектором и осями

эллипсоида соответственно. Из (5.28) и (5.34) получим

Таким образом, в первом приближении величины определяющие ориентацию вектора относительно эллипсоида, могут быть вичислены по тем же формулам, что и величины в движении Эйлера — Пуансо, в котором роль времени играет величина

Пусть в неподвижной системе координат вектор кинетического момента тела относительно центра тяжести К имеет компоненты Из теоремы об изменении кинетического момента имеем уравнения

Все компоненты — медленные переменные. Использовав (5.40), получим дифференциальное уравнение для величины К, усреднение правой части которого дает следующее уравнение первого приближения:

Усреднение правой части выражения для производной от кинетической энергии движения относительно центра тяжести дает такое уравнение первого приближения:

Если с нашим реальным эллипсоидом мысленно связать его эллипсоид инерции для центра тяжести, провести через центр тяжести прямую, параллельную вектору со, и через точку пересечения этой прямой с эллипсоидом инерции провести касательную к нему плоскость, то, как и в случае Эйлера — Пуансо, эта плоскость будет перпендикулярна вектору К и будет отстоять от центра эллипсоида на расстоянии . В случае Эйлера — Пуансо Т и К постоянны поэтому постоянна и величина . В рассматриваемом же случае Т и К изменяются со временем. Однако вычисления, использующие уравнения (5.41), (5.42) и близость моментов инерции (5.14), показывают, что с точностью до членов порядка включительно. Поэтому, как и в случае Эйлера — Пуансо, в рассматриваемом случае эллипсоид инерции катится (и вертится) без скольженпя по построенной касательной плоскости, остающейся на неизменном в первом приближении расстоянии от центра эллипсоида. Однако в рассматриваемом случае центр эллипсоида движется согласно уравнениям (5.27) и меняется ориентация вектора К относительно неподвижной системы координат

Получим уравнения, определяющие ориентацию вектора К. Вычисление правой части третьего уравнения из (5.40) с использованием (5.3), (5.11) (5.13) и (5.15) показывает, что она с точностью до членов порядка в включительно равна нулю. Таким образом, в первом приближении проекция вектора кинетического момента К на вертикаль постоянна.

Пусть а — угол между осью и проекцией вектора К на горизонтальную плоскость. Легко видеть, что тогда (см. формулу (9.5) гл. 3)

Заменив здесь на правые части соответствующих уравнений из (5.40) и произведя усреднение, получим следующее уравнение первого приближения:

1
Оглавление
email@scask.ru