Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 2. Динамические системы в n-мерном евклидовом пространстве.Существенные отличия от систем на плоскости и от систем на поверхностях обнаруживаются уже при системе
наряду с состояниями равновесия и замкнутыми траекториями возможны траектории всех тех типов, что и на двумерных поверхностях и, в частности, незамкнутые устойчивые по Пуассону (незамкнутые самопредельные). Однако установление всех возможных типов траекторий, аналогичное теории Пуанкаре — Бендиксона Обратимся к вопросу о перенесении понятий, введенных для двумерных систем, на трехмерные и большего числа измерений. Рассмотрим, какой характер имеют простейшие «грубые» состояния равновесия и предельные циклы трехмерной системы. Возможны следующие случаи грубых состояний равновесия: а) узел и фокус, устойчивый или неустойчивый, когда все траектории, достаточно близкие к состоянию равновесия, стремятся к нему при б) седло и седло-фокус у седла и седло-фокуса есть двумерная сепаратрисная поверхность и две изолированные сепаратрисы (по разные стороны от сепаратрисной поверхности); на сепаратрисной поверхности седла есть узел, а на сепаратрисной поверхности седло-фокуса — фокус; все другие траектории, проходящие через достаточно малую окрестность седла и седло-фокуса, выходят из его окрестности и при возрастании, и при убывании Качественный характер седла и седло-фокуса тождествен (в смысле, полностью аналогичном такому понятию, введенному для двумерных систем). Характер указанных состояний равновесия наглядно и просто можно посмотреть на примере линейных систем. Для системы
в начале координат при Аналогично тому, как окрестность предельного цикла двумерной динамической системы изучается с помощью функции последования, в трехмерном пространстве окрестность замкнутой траектории изучается с помощью «отображения Пуанкаре» отображения в себя трансверсальной к циклу площадки а. Точка пересечения площадки с циклом есть инвариантная точка отображения. Возможны следующие случаи грубых предельных циклов: устойчивый (неустойчивый) предельный цикл, когда все достаточно близкие к циклу траектории стремятся к нему при
Рис. 252 Подчеркнем одно характерное для многомерных систем свойство: сепаратрисные поверхности разных седел и седловых предельных циклов могут пересекаться или касаться по общей для них траектории. Случай их трансверсального (без касания) пересечения является грубым. Обратимся теперь к вопросу о перенесении понятий, введенных для двумерных систем, на трехмерные и большего числа измерений и в первую очередь — понятия грубости. И здесь ситуация осложняется. Надо иметь в виду, что рассмотрение вопроса о грубости трехмерных систем тесно связано с рассмотрением грубости отображения плоской области в себя или плоскости в плоскость. Полностью необходимые и достаточные условия грубости трехмерных систем еще не установлены. Выделены только классы грубых систем, удовлетворяющих некоторым достаточным условиям грубости. Это, в первую очередь, системы Морса — Смейла, удовлетворяющие условиям: 1) число состояний равновесия конечно и все состояния равновесия грубые; 2) число замкнутых траекторий конечно и все траектории грубые; 3) сепаратрисные поверхности различных седел и седловых предельных циклов пересекаются трансверсально (без касания). Несмотря на простую и естественную формулировку этих достаточных условий, возможная качественная структура систем Морса — Смейла может быть очень сложной. У таких систем может быть счетное множество «ячеек». Существуют также примеры грубых динамических систем со счетным множеством седловых предельных циклов с неограниченно увеличивающимся периодом. Впервые такой пример был построен американским математиком Смейлом (см. список дополнительной литературы [42]). Примеры грубых систем со счетным множеством устойчивых или неустойчивых циклов с неограниченно увеличивающимся периодом отсутствуют. Доказательство того, что в грубых многомерных системах не может существовать счетного множества предельных циклов с ограниченными периодами, не представляет затруднений. Понятие грубости динамической системы в многомерных системах не играет той роли, которую оно играет для двумерных динамических систем. Именно, метеорологом Лоренцем для целей предсказания погоды была выведена очень простая система трех дифференциальных уравнений
с постоянными параметрами В системе (1) есть седло, и это седло принадлежит аттрактору вместе со своими двумя изолированными сепаратрисами Аттрактор Лоренца и его негрубость сохраняются и вообще при всех достаточно малых изменениях правых частей уравнения (1). А отсюда, очевидно, следует, что не существует сколь угодно близкой к системе (1) грубой системы и, следовательно, грубые системы не всюду плотны в пространстве трехмерных систем. Так как для двумерных систем всюду плотность грубых систем в пространстве динамических систем была чрезвычайно важным свойством, то в этом кардинальном вопросе разница между двумерными и многомерными динамическими системами очень существенна. Тем не менее понятие грубости динамических систем трех и большего числа измерений — в простейшем случае систем Морса — Смейла или даже в еще более упрощенной ситуации, например, в случае систем Морса — Смейла с конечным числом ячеек, все же сохраняет свое значение. Большое значение (как математическое, так и для приложений) имеет также рассмотрение бифуркаций многомерных динамических систем через негрубые системы. Мы сделаем по этому поводу некоторые краткие замечания. Естественно рассмотреть в первую очередь бифуркации простейших негрубых элементов и, прежде всего, простейших негрубых состояний равновесия. В трехмерных системах, так же как и в двумерных, простейшими негрубыми являются состояния равновесия с двумя чисто мнимыми характеристическими корнями. Для них Ляпуновым аналогично двумерным системам введены «ляпуновские величины». В простейших из этих состояний равновесия первая ляпуновская величина отлична от нуля. В этом простейшем случае в трехмерных системах состояния равновесия могут быть двух типов: сложным фокусом (устойчивым или неустойчивым) и сложным седло-фокусом. Далее, простейшими негрубыми состояниями равновесия в трехмерных системах могут быть двукратные состояния равновесия, возникшие в результате слияния двух простых. На рис. 253 показано образование двукратного состояния равновесия седло-фокус — фокус в результате слияния двух простых — седло-фокуса и устойчивого фокуса. При надлежащих изменениях правых частей системы двукратные состояния равновесия либо опять разделяются на простые, либо исчезают (см. [38]). На рис. 254 показано исчезновение двукратного состояния равновесия седло-узел, возникшего в результате слияния двух простых — седла и устойчивого узла. В двумерных системах два седла не могут слиться, образуя двукратное состояние равновесия, но такая возможность появляется в системах с числом измерений, большим двух. Возможные бифуркации простейшего сложного фокуса с отличной от нуля первой ляпуновской величиной: либо фокус становится грубым той же устойчивости, что и сложный фокус, либо из сложного фокуса рождается предельный цикл, а сложный фокус превращается в седло-фокус (см. [37]).
Рис. 253 Аналогичны бифуркации для сложного седло-фокуса: либо он делается грубым, либо из него рождается седловой предельный цикл, а седло-фокус становится грубым фокусом, устойчивым или неустойчивым (см. [37]). Возможны бифуркации, полностью аналогичные бифуркациям седло-узла на плоскости. Если сепаратриса седло-узла или седло-фокуса-фокуса идет в него же и при Если одна из сепаратрис седло-седла возвращается в него же, то при исчезновении седло-седла появляется единственный седловой предельный цикл [137, 47]. Рассмотрим бифуркации предельных циклов трехмерных динамических систем. Для таких предельных циклов Ляпуновым были введены величины, полностью аналогичные первому, неравному нулю коэффициенту в функции последования в окрестности замкнутой траектории на плоскости. Простейшими негрубыми предельными циклами являются циклы с первой ляпуновской величиной, не равной нулю. Таких предельных циклов в трехмерном пространстве три типа. Рис. 254 (см. скан) Предельный цикл первого типа аналогичен двукратному предельному циклу на плоскости. При малых изменениях правых частей динамической системы он или разделяется на два грубых предельных цикла — устойчивый (соответственно неустойчивый) и седловой, или исчезает. Цикл второго типа может быть либо простым негрубым — устойчивым или неустойчивым, либо негрубым седловым. В первом случае от него при малых изменениях параметров либо отделяется двухоборотный с периодом, близким к удвоенному периоду однооборотного цикла (рис. 255), а однооборотный цикл делается седловым, либо он становится грубым устойчивым. Соответственно во втором случае от него либо отделяется двухоборотный седловой цикл, а остающийся однооборотный становится простым циклом, либо он делается грубым седловым. От цикла третьего типа — однооборотного, устойчивого — рождается устойчивый двумерный тор (рис. 256), а однооборотный предельный цикл делается неустойчивым. Разбиение на траектории самого тора может быть очень сложным. Оно может включать незамкнутые траектории, устойчивые по Пуассону (незамкнутые самопредельные), или пары устойчивых и неустойчивых замкнутых траекторий, являющихся предельными для других траекторий на торе (см. [13, дополнение]). В трехмерной системе аналогом сепаратрисы двумерной системы, идущей из седла в другое седло, является либо касание сепаратрисных поверхностей разных седел, либо «включение» сепаратрисы одного седла в сепаратрисную поверхность другого, либо совпадение изолированных сепаратрис двух седел; Аналогом сепаратрисы, образующей «петлю», является в трехмерной системе случай, когда изолированная сепаратриса седла включается в сепаратрисную поверхность того же седла. Целый ряд основных случаев бифуркации такой сепаратрисы,
Рис. 255
Рис. 256 «образующей петлю», исследован в работе [139]. Для трехмерных систем введено понятие «седловой величины о», полностью аналогичное седловой величине двумерной системы. Некоторые случаи рождения предельных циклов из петли сепаратрисы трехмерной системы аналогичны рождению цикла из петли двумерной системы. Так, если седловая величина В заключение скажем еще несколько слов о фундаментальном понятии, лежащем в основе качественного рассмотрения двумерных систем, — о классификации с точки зрения топологической тождественности разбиения на траектории: в случае многомерных систем этот подход также требует пересмотра и модификации. Однако на этих важных и тонких вопросах мы здесь не имеем возможности останавливаться и отсылаем читателя к специальной литературе (см. [63]).
|
1 |
Оглавление
|