Главная > Книга для чтения по общему курсу дифференциальных уравнений
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 5. Частные случаи теоремы Пикара

I. Пусть в условиях т. е. область (4.2) имеет вид

и условие Липшица (4.4) выполнено при всех из области (5.1) при одной и той же постоянной Здесь условие (4.3) отпадает. В этом случае решение, обладающее свойством (4.5), существует, единственное и определено в области

Действительно, ранее мы ограничили промежуток изменения величиной уже в формулах (4.14), чтобы значения не вышли из области (4.2), в которой определены функции Такое ограничение промежутка изменения х позволяет определить по (4.10) все приближения . Теперь нет нужды уменьшать промежуток изменения х, так как все приближения согласно формулам функции непрерывные и, следовательно, ограниченные в промежутке -поэтому не выходят из бесконечной области (5.1). Все же дальнейшие рассуждения повторяются без изменения, и мы получаем предельные функции определенными в промежутке -Теперь лишь можно поставить вопрос о том, какими числами ограничены при Это можно сделать на основании оценки (4.19) и ряда (4.21), если принять во внимание, что

II. Область (4.2) имеет вид

и условие Липшица (4.4) выполнено во всей области (5.3) с одной постоянной . В этом случае система (4.1) имеет решение, удовлетворяющее условию (4.5), где любые

конечные числа, и решение будет определено в любом промежутке — так как теперь мы имеем и случай I, в котором а — любое положительное число.

Замечание 5.1. Если в области (5.3) вместо условия (4.4) выполнено условие

где непрерывная функция, то в области (5.1) при любом а выполняется условие Липшица с постоянной откуда снова следует существование непрерывного решения в области —

Пример 5.1.

где — полиномы от своих аргументов, непрерывные функции в промежутке Здесь, очевидно,

во всем бесконечном пространстве и — некоторая постоянная, т. е. имеем случай II. Решение с любыми конечными условиями существует в промежутке и получается в виде рядов (4.21), сходящихся равномерно в промежутке при любом

Пример 5.2.

определены и непрерывны в области (5.3). Пусть еще , являются непрерывными периодическими относительно соответственно с периодами Тогда во всей области (5.3), и потому решение системы существует в промежутке — с любыми конечными начальными условиями Коши

Пример 5.3.

где непрерывные в промежутке Здесь мы имеем случай I, так как поэтому система (5.7) имеет решение с начальными значениями где любые конечные числа, а любое из промежутка Если же коэффициенты непрерывны в промежутке

то и решение с любыми конечными начальными условиями будет определено и непрерывно в промежутке (5.8), так как здесь промежуток можно взять любым конечным.

Пусть, например, в системе — рациональные функции, т. е.

где Q — вещественные полиномы. Тогда в качестве промежутка можно взять любой, где а и не являются вещественными корнями полиномов и нет вещественных корней этих полиномов внутри этого промежутка. Если же нет на вещественной оси х корней полиномов то имеем II случай, т. е. при любых конечных начальных значениях решение системы (5.7) существует в промежутке

Замечание 5.2. Здесь по методу Пикара получим решение в более широком промежутке, чем по теореме Коши, так как ряд Пикара сходится в промежутке ряд Тейлора — в теореме Коши лишь при , где — расстояние от до ближайшего корня знаменателей

Замечание 5.3. Если имеем уравнение (3.16), где непрерывны в области уравнение (3.16) имеет единственное решение с начальными условиями где произвольные числа. Это решение существует и непрерывно в области и представимо в этой области рядом Пикара. Если непрерывны на всей вещественной оси х, то таким будет и указанное решение.

1
Оглавление
email@scask.ru