Главная > Нелинейное оценивание параметров
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава II. ФОРМУЛИРОВКА ЗАДАЧИ

А. ДЕТЕРМИНИСТИЧЕСКИЕ МОДЕЛИ

2.1. Основные положения

Исследователь часто выражает свои теоретические соображения в виде математических соотношений между определенными величинами. Подобным образом и инженер выводит уравнения, описывающие свойства его конструкции или ход процессов. Назовем соотношения, которые, по предположению исследователя, описывают определенное физическое явление, моделью. Как правило, модель состоит из одного или нескольких уравнений. Величины, входящие в уравнения, разобьем на переменные и параметры. Такое разбиение не всегда однозначно, оно часто зависит от задачи, в которой участвуют переменные. Как правило, модель строится для того, чтобы выяснить соотношения, существующие между величинами, которые в эксперименте могут быть измерены независимо; это и есть переменные модели. При выводе этих соотношений, однако, часто вводят «константы», характеризующие особенности, присущие данному явлению (или материалам и оборудованию, используемым в конкретном эксперименте). Это — параметры.

Проиллюстрируем сказанное примером.

Цилиндрический сосуд с площадью поперечного сечения А наполнен жидкостью плотности и вязкости Допустим, что эта жидкость вытекает через капиллярную трубку радиуса и длины Пусть обозначают высоту уровня жидкости в сосуде в моменты соответственно. Уравнения ламинарного потока дают следующее соотношение для данного случая:

где g - ускорение силы тяжести; кинематическая вязкость жидкости. Если интерпретировать (2.1-1) как зависимость высоты уровня жидкости от времени, то следует рассматривать как переменные, как параметры. Среди последних это константа, существующая в природе, следующие три отражают свойства аппаратуры, а свойство используемого вещества. Если бы мы проводили эксперимент над несколькими различными сосудами, то нам следовало бы добавить к списку переменных, оставляя в качестве параметров лишь

С другой стороны, пусть наша установка используется как измеритель вязкости. Мы делаем на сосуде две отметки на уровнях считая от дна сосуда, и измеряем промежуток времени необходимый для того, чтобы уровень жидкости опустился от верхней отметки до нижней. Кинематическую вязкость жидкости можно тогда вычислить из следующего соотношения, полученного из

где Мы градуируем наш прибор с помощью жидкостей, вязкость которых известна. Применительно к такой калибровке содержит две переменные — (измеряемую непосредственно) и (которую можно найти по таблицам) и параметр а (физический смысл которого в данный момент нас не интересует):

Значения некоторых параметров, входящих в модель, могут быть известны с высокой точностью (например, гравитационной постоянной Роль таких параметров не отличается, по крайней мере для целей нашего изложения, от параметров, являющихся чисто числовыми константами, таких, как или в Мы исключаем подобные параметры из дальнейшего рассмотрения.

1
Оглавление
email@scask.ru