Главная > Нелинейное оценивание параметров
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

4.4. Множественная линейная регрессия

Если модель линейна, правильный выбор весов в обеспечивает оптимальные статистические свойства соответствующих оценок. Линейная модель принимает вид

где матрица заданных функций (в задачах подгонки кривых часто используются полиномы и тригонометрические функции). Объединяя уравнения для всех значений получаем в матричной форме

где

Для определенного набора данных В — это постоянная матрица. Пусть значения измеряются без ошибок, а каждое наблюдение у,

является случайной величиной со средним значением и пусть V — ковариационная матрица всех элементов у, т. е.

Если минимизирует функцию

то 0 должно удовлетворять условию

Это эквивалентно системе нормальных уравнений

Разрешая их относительно 0, найдем, при условии, что матрица не вырождена,

Это хорошо известная формула множественной линейной регрессии. Очевидно, является линейной оценкой, имеющей вид

По нашим предположениям, Следовательно, если постоянны, найдем из

Это значит, что 0 есть несмещенная оценка 0. Далее, (4 4-3) эквивалентно следующему:

Легко показать также, что

Следовательно, выражение для ковариационной матрицы выборочного распределения оценки 0 преобразуется в следующее:

Теорема Гаусса-Маркова (доказанная в приложении Д) утверждает, что среди всех линейных несмещенных оценок та, которая выражается имеет наименьшую дисперсию. Если, кроме того, распределение нормально, оценка будет эффективной. В случае, когда

ошибки измерений независимы и имеют равные дисперсии мы получим и

это обычная оценка наименьших квадратов без взвешивания. Ковариационная матрица этой оценки имеет вид

Вычислительные методы решения задач линейной регрессии обсуждаются в разделе 5.11. При решении задач линейной регрессии часто возникает вопрос: какие переменные следует включить в модель и какие исключить из нее? Говоря другими словами, вопрос заключается в том, какие параметры следует опустить (положить их равными нулю) из-за их незначимого вклада в модель. Метод шаговой регрессии (раздел дает на этот вопрос.

Перед тем как покончить с обсуждением линейных моделей, Коротко рассмотрим, как изменятся оптимальные свойства регрессионной оценки, если предполагаемая модель неверна.

Во-первых, предположим, что в модели опущены некоторые существенные ее члены. Тогда уже не будет верным равенство вместо этого имеем

где фиксированный вектор, связанный с теми членами, которые исключены из уравнения. Если 0 вычисляется по то находим, что

так что 0 уже не будет несмещенной оценкой. Смещение выражается точно в виде

Во-вторых, рассмотрим случай, когда мы ошиблись в выборе матрицы Пусть истинная ковариационная матрица есть Тогда ковариационная матрица оценки, определяемой по выглядит так:

Мы хотим оценить, насколько эта оценка уступает по эффективности наилучшей возможной оценке, для которой Ковариационная матрица последней согласно есть Определим относительную неэффективность оценки, найденной по как отношение ее обобщенной дисперсии к минимально возможной обобщенной дисперсии, т. е.

Очевидно, что если Можно показать, что в других случаях может принимать значения лишь в интервале, приведенном ниже; его величина определяется матрицей В:

где а — число обусловленности, а именно отношение наибольшего собственного числа матрицы наименьшему. Для примера положим, что используется оценка наименьших квадратов без взвешивания, в то время как фактически дисперсии ошибок меняются от 10 до 100. Тогда где вектор, компонентами которого являются числа в диапазоне от 10 до 100. Отсюда следует, что Неэффективность оценки 0 может быть порядка

В то время как оценка вида или является наилучшей несмещенной оценкой, возможно построение смещенных оценок с меньшим значением обобщенной дисперсии. Например, в методе гребневой регрессии [106], [107] в подставляется оценка

где это положительный параметр. Можно показать, что ковариационная матрица оценки выражается следующим образом:

и что величина минимальна, когда удовлетворяет уравнению

Так как 0 неизвестно, оптимальное значение Я нельзя определить априори. Хёрл и Кеннард рекомендовали строить так называемый гребневый след, который представляет собой график зависимости компонент от при , возрастающем от нуля. Значение выбирается там, где прекращается быстрое изменение Заметим, что при мы имеем обычную оценку наименьших квадратов. Заметим также, что не удовлетворяет Следовательно, оценка наименьших квадратов никогда не будет линейной оценкой с наименьшей обобщенной дисперсией.

1
Оглавление
email@scask.ru