Главная > Хаотические колебания
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

3. ОБЗОР СИСТЕМ С ХАОТИЧЕСКИМИ КОЛЕБАНИЯМИ

Мир наш такой, какой он есть, и я такой, каким живу ... Все вне меня и все во мне порождено игрой необъяснимых сил. Порядок, тот, что в хаосе таится, превыше разуменья, недоступен человеку.

Генри Миллер, Черная весна (Black Spring).

3.1. НОВЫЕ ПАРАДИГМЫ ДИНАМИКИ

Томас Кун в книге «Структура научных революций» [97] утверждает, что крупные изменения происходят в науке в общем не тогда, когда выдвигаются новые теории, а когда меняются простые модели, с помощью которых ученые формулируют и осваивают теорию. Концептуальная модель или задача, которая охватывает основные свойства целого класса задач, названа им «парадигмой». Модель, состоящая из массы и пружины, является такой парадигмой теории колебаний. В области нелинейной динамики классическими парадигмами стали движение маятника и задача трех тел небесной механики.

Нет лучшего примера теории, новые модели и парадигмы которой обещают значительные перемены в естественнонаучном и математическом мышлении, чем нелинейная динамика, испытывающая сейчас революционные изменения. Двумя главными парадигмами здесь являются аттрактор Лоренца (см. уравнения (1.3.9)) и логистическое уравнение (1.3.6). Эти два примера заключают в себе многие особенности хаотической динамики, такие, как разбегающиеся траектории, субгармонические бифуркации, удвоение периода, отображения Пуанкаре и фрактальные размерности. Как для освоения теории линейных колебаний необходимо изучить все тонкости модели из массы с пружиной, без которых нельзя понять колебания сложных систем, так же и каждому, кто ищет свой путь в современной нелинейной динамике, не обойтись без понимания явлений, скрытых в модели Лоренца и логистическом уравнении. Другие, менее яркие парадигмы также важны для понимания и развития теории динамических систем. Среди них вынужденные движения осциллятора Ван дер Поля (уравнение (1.2.5)), модели осциллятора Дуффинга (1.2.4), разработанные Уэдой и Холмсом (см. ниже в этой главе), и двумерное отображение Энона (1.3.8).

Читателям, заинтересовавшимся моделью тепловой конвекции Лоренца, следует прочитать ее подробное обсуждение в посвященной этой проблеме монографии Спэрроу [178]. Гукенхеймер и Холмс [57] написали современную математическую книгу, основанную на четырех парадигмах современной динамики, уравнении Ван дер Поля, модели Дуффинга изогнутого стержня, системе Лоренца и аттракторе Энона. Еще одна классическая модель хаотической динамики — масса под действием внешних соударений, например шарик, подскакивающий на колеблющемся столе или отскакивающий от пары стенок. Эта модель находит применение в теории ускорения электронов в электромагнитных полях, и ее иногда называют моделью ускорения Ферми. Она описывается двумерным отображением, аналогичным отображению Энона. Хорошее обсуждение модели Ферми и системы Лоренца можно найти в книге Лихтенберга и Либермана [110].

Впрочем, большинство перечисленных здесь книг почти полностью посвящены математическому анализу соответствующих моделей хаоса. В этой главе мы проведем обзор разнообразных математических и физических моделей, которые обнаруживают хаотические колебания. Мы попытаемся описать физическую природу хаоса, возникающего в этих примерах, и указать как точки соприкосновения, так и отличия физических примеров от их более математизированных парадигм, упомянутых выше. Эти примеры взяты из механики твердых тел и жидкостей, теории электрических цепей, теории управления и химической технологии. Особое внимание мы уделим имеющимся на сегодняшний день экспериментальным доказательствам существования хаотических колебаний.

1
Оглавление
email@scask.ru