Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Глава 3. СУПЕРСТРУНЫ§ 3.1. СУПЕРСИММЕТРИЧНЫЕ ТОЧЕЧНЫЕ ЧАСТИЦЫСуперсимметрия - самая изящная из всех симметрий; она объединяет бозоны и фермионы в один мультиплет:
Объединив поля с разной статистикой, суперсимметрия и супергруппы к тому же открыли совершенно новую область математических исследований. Но, как назло, нет ни одного экспериментально установленного факта, который свидетельствовал бы в пользу этой теории. Например, физики попытались найти суперсимметричные мультиплеты для электрона или нейтрино, но обнаружить скалярные аналоги этих частиц так и не удалось. Фактически ни у одной из ныне известных частиц нет суперсимметричного партнера. Некоторые критики назвали суперсимметрию «решением, для которого нужно найти задачу». Хотя нет абсолютно никаких эмпирических данных, обосновывающих необходимость введения понятия о суперсимметрии, невозможно отрицать, что это понятие дает нам целую сокровищницу чрезвычайно желательных теоретических приемов, сулящих огромные выгоды. Суперсимметрия - это нечто большее, чем просто изящный способ объединения элементарных частиц в радующие глаз мультиплеты; у нее есть определенные практические применения в квантовой теории поля. Вот их список. (1) Суперсимметрия порождает тождества супер-Уорда-Такахаши, уничтожающие многие обычно расходящиеся фейнмановские диаграммы. Например, фейнмановские петлевые диаграммы с бозонами и фермионами, циркулирующими внутри петли, отличаются множителем — 1. Вследствие суперсимметрии бозонная петля может сократиться с фермионной и оставшаяся расходимость будет намного мягче. Мы видим, таким образом, что теории Янга-Миллса с суперсимметрией обладают лучшими перенормировочными свойствами, чем обычные калибровочные теории. Действительно, некоторые «теоремы о неперенормируемости» можно доказать во всех порядках теории возмущений. (2) Суперсимметрия может решить «проблему иерархии», которая стала проклятьем теорий типа Великого Объединения (ТВО). В этих теориях есть два далеко отстоящих друг от друга масштаба энергий: масштаб энергий обычной физики элементарных частиц порядка миллиарда электрон-вольт и диапазон энергий ТВО порядка около этого миллиардов электрон-вольт. Между этими двумя масштабами простирается обширная «энергетическая пустыня», в которой не обнаруживается никаких новых явлений. Однако при вычислении эффектов перенормировки эти две энергетические шкалы неизбежно начинают перемешиваться. Петлевые поправки (например, к массам кварков) могут повысить эти массы вплоть до значений, близких к энергиям ТВО, что неприемлемо. «Точная настройка» постоянных взаимодействия и масс вручную может в принципе решить проблему иерархии, но это потребует больших ухищрений и будет выглядеть слишком искусственно. К счастью, тождества Уорда-Такахаши суперсимметричной теории достаточно сильны, чтобы обеспечить выполнение «теорем о неперенормируемости во всех порядках теории возмущений. Таким образом, суперсимметрия необходима для стабилизации этих двух масштабов масс в теории возмущений и предотвращения их перемешивания. (3) Суперсимметрия может пролить свет на проблему «космологической постоянной». Данные наблюдательной астрономии указывают, что содержащий космологическую постоянную член (4) Суперсимметрия устраняет многие нежелательные частицы. Тахион, который возникает в модели бозонной струны, устраняется, например, тем, что он нарушает суперсимметрию. Устраняя эти частицы, суперсимметрия также уменьшает расходимость диаграмм с высшими петлями. В гл. 5 мы покажем, что потенциально могущие появиться расходимости теории суперструн связаны с инфракрасным испусканием тахионов и дилатонов. Поэтому, устраняя эти частицы, мы одновременно устраняем возможные источники расходимостей. (5) Наконец, когда суперсимметрия развивается в локальную калибровочную теорию, она естественным образом уменьшает расходимости квантовой теории гравитации. Это происходит по той причине, что локальная суперсимметрия может быть определена лишь при наличии гравитонов (см. Приложение). Локальная суперсим-Метрия тем самым тесно связана с общей теорией относительности. Действительно, локальная суперсимметрия успешно устраняет расходимости низших петлевых диаграмм супергравитации. Однако самая обширная из теорий супергравитации, Суперсимметрия как группа преобразований, относительно которых действие инвариантно, была впервые открыта в теории струн. Жерве и Сакита [1] показали, что обобщение обычного бозонного действия обладает симметрией, превращающей бозоны в фермионы. К сожалению, это открытие многие годы оставалось незамеченным, поскольку в то время суперсимметрия струнной модели была двумерной суперсимметрией на мировой поверхности. Лишь сравнительно недавно было окончательно доказано, что эта модель обладает не только двумерной, но и пространственно-временной десятимерной суперсимметрией. Начнем наше обсуждение с простейшего действия, учитывающего спин, - точечной частицы со спином. Кроме переменной
Действие точечной частицы инвариантно относительно преобразований
Заметим, что комбинация
сама по себе инвариантна относительно этого преобразования. Поэтому любое выражение, являющееся функцией этой комбинации, будет инвариантно относительно указанного преобразования. Странное свойство этого действия, однако, состоит в том, что половина компонент фермионного поля сама собой выпадает из действия. Варьируя поля
Кроме того, получаем
Итак, половина собственных значений матрицы Причина этого явления - то, что действие инвариантно относительно еще одного локального преобразования [2]:
Кроме того, есть еще одна бозонная симметрия действия:
Если попробовать вычислить коммутатор двух суперсимметричных операций, приведенных в (3.1.6), то обнаружим, что алгебра не замыкается без использования уравнений движения:
(Это на самом деле типично для суперсимметричных действий. Заметим, что число компонент переменных Наконец, вычисляя канонически сопряженные переменные, находим
Это сулит огромные трудности при ковариантном квантовании. Поскольку канонически сопряженная величина содержит явную зависимость от х, то квантовые уравнения становятся нелинейными и решать их намного сложнее. Что еще хуже, оказывается, член
|
1 |
Оглавление
|