Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 3.7. Приближенным расчет дополнительных ошибок ЦАС, вызванных квантованием по уровнюПри рассмотрении типовых случайных процессов в § 3.4 был введен дискретный белый шум, генерируемый устройствами квантования по уровню (округления) в ЦАС. Источниками такого шума могут быть входные и выходные преобразователи ЦАС. Кроме того, процессы округления могут наблюдаться в арифметическом устройстве ЦВМ при реализации дискретных алгоритмов коррекции ЦАС. Более строго вопрос учета шумов квантования будет рассмотрен ниже в 3.8. Линейный дискретный корректирующий алгоритм ЦВМ может представляться либо в виде передаточной функции (2.155), либо в виде разностного уравнения (2.156). Положив
Этой передаточной функции соответствует разностное уравнение
Структурная схема реализации алгоритма, заданного передаточной функцией (3.124) и разностным уравнением (3.125), изображена на рис. 3.11. На схеме введены квантователи К, соответствующие округлению в тическом устройстве ЦВМ, квантователь Рис. 3.11. (см. скан) Структурная схема реализации линейного корректирующего алгоритма в ЦВМ. Схема, изображенная на рис. 3.11, соответствует так называемому прямому программированию при реализации передаточной функции (3.125) или ей соответствующего разностного уравнения (3.124). Другие подходы при их реализации будут рассмотрены ниже в § 5.5. Так как число разрядов арифметического устройства выше числа разрядов входного преобразователя, то цифровая единица младшего разряда входного преобразователя содержит Если использовать изложенный выше прием замены эффекта квантования дискретным белым шумом (рис. 3.6), то структурная схема реализации линейного алгоритма ЦВМ может быть сведена к виду, изображенному на рис. 3.12. Здесь Рис. 3.12. (см. скан) Преобразованная структурная схема реализации линейного корректирующего алгоритма в ЦВМ. Коэффициент передачи будет равен единице, если рассматривать шум, приложенный ко входу преобразователя. При рассмотрении шума, генерируемого входным преобразователем, возможны два случая. В системах стабилизации задающее воздействие преобразователя (на входе звена с коэффициентом передачи
где В системах с изменяющимся во времени задающим воздействием округление производится в двух преобразователях: ввода задающего воздействия и ввода управляемой величины (рис. 1.3). Поэтому корреляционная функция шума
При этом функция распределения суммарного шума соответствует закону Симпсона. Шум, генерируемый выходным преобразователем, может быть на основании § 3.4 описан корреляционной функцией
где Шуму, генерируемому арифметическим устройством [29], на основании структурной схемы, изображенной на рис. 3.12, соответствует корреляционная функция
где Суммарному шуму на основании центральной предельной теоремы тем точнее будет соответствовать нормальное распределение, чем больше значение При пересчете этого шума на выход ЦВМ следует учесть два обстоятельства. Во-первых, корреляционная функция (3.128) соответствует случаю размыкания обратной связи на рис. 3.12, которая охватывает нижний ряд элементарных передаточных функций. Во-вторых, следует сделать пересчет цифровых единиц арифметического устройства на цифровые единицы входного и выходного преобразователей.
Рис. 3.13. Расчетные структурные схемы учета шумов квантования в ЦАС. При этом будем предполагать в соответствии с рис. 2.22, что в установившемся режиме единице младшего разряда на входе соответствует единица младшего разряда на выходе ЦВМ, а соотношение между ними и единицей младшего разряда арифметического устройства определяется значением В соответствии с этим шум арифметического устройства
Здесь
представляет собой эквивалентную полосу пропускания ЦВМ шума арифметического устройства, а
Нахождение корреляционной функции Замена нелинейного действия квантователей (рис. 3.11) на аддитивные шумы (рис. 3.12) может приближенно делаться лишь для случая независимой работы квантователей, так как предполагает в дальнейшем суперпозицию результатов, что требует линейности системы. Однако работа выходного квантователя не является независимой, так как на его вход поступают шумы арифметического устройства. Кроме того, существование шума арифметического устройства обычно вообще не подтверждается, так как коэффициенты, входящие в (3.124) и (3.125), выбираются в виде целого количества младших разрядов арифметического устройства (т. е. фактически округляются при записи их в память машины) и никакого округления после умножения на эти коэффициенты не происходит. Лишь в некоторых особых случаях, связанных с использованием сдвига разрядных сеток арифметического устройства, возможно появление необходимости в округлении. Если коэффициенты, входящие в (3.124) и (3.125), выбираются в виде целого количества единиц младшего разряда входного преобразователя (при В связи с изложенным расчетная схема учета квантования в ЦАС для случая, когда округление происходит как во входном, так и в выходном преобразователе, изображена на рис. Возможен перенос действия двух помех в одну точку. На рис. 3.13, в изображен случай приведения помехи
где Коэффициент
При этом предполагается, что процессы квантования на входе и выходе ЦВМ независимы. При Помеху квантования в выходном преобразователе можно отнести ко входу ЦВМ (рис. 3.13, г) в виде сигнала
В этом случае дисперсия сигнала Результирующая спектральная плотность шумов квантования, отнесенная ко входу ЦВМ,
При Корреляционные функции для спектральных плотностей (3.134) и (3.136) могут быть найдены в соответствии с изложенным в § 3.3. Спектральная плотность дополнительной ошибки, вызываемой квантованием по уровню, может быть получена на основе спектральных плотностей (3.134) или (3.136):
где Интегрирование (3.137) дает дисперсию дополнительной ошибки, вызванной квантованием по уровню на входе и выходе ЦВМ:
Формула (3.138) может быть также представлена в следующем виде:
В этой формуле частотная передаточная функция замкнутой системы
частотная передаточная функция непрерывной части при замкнутой главной обратной связи
Если
|
1 |
Оглавление
|