Главная > Теоретическая физика. Т. V. Статистическая физика.
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 131. Кристаллические классы

В целом ряде явлений, которые можно назвать макроскопическими, кристалл ведет себя как однородное сплошное тело. Макроскопические свойства кристалла зависят только от направления в нем. Так, особенности прохождения света через кристалл зависят только от направления луча света; тепловое расширение кристалла происходит, вообще говоря, различно по разным направлениям; наконец, упругие деформации кристалла под влиянием тех или иных внешних сил также зависят от направлений.

С другой стороны, симметрия кристаллов приводит к эквивалентности различных направлений в нем. Вдоль этих эквивалентных направлений все макроскопические свойства кристалла будут в точности одинаковыми. Мы можем, следовательно, сказать, что макроскопические свойства кристалла определяются симметрией направлений в нем. Если, например, кристалл обладает центром симметрии, то всякому направлению в нем будет эквивалентно прямо противоположное.

Трансляционная симметрия решетки не приводит к эквивалентности каких-либо направлений параллельные переносы вообще не меняют направлений. По этой же причине для симметрии направлений несущественно различие между винтовыми и простыми осями симметрии или между простыми плоскостями симметрии и плоскостями зеркального скольжения.

Таким образом, симметрия направлений, а потому и макроскопических свойств кристалла определяется совокупностью его осей и плоскостей симметрии, причем винтовые оси и плоскости скольжения надо рассматривать как простые оси и плоскости.

Такие совокупности элементов симметрии называются кристаллическими классами.

Как мы уже знаем, реальный кристалл можно рассматривать как совокупность нескольких решеток Бравэ одинакового типа, вдвинутых друг в друга. Благодаря такому наложению решеток Бравэ симметрия реального кристалла, вообще говоря, отличается от симметрии соответствующей решетки Бравэ.

В частности, совокупность элементов симметрии класса данного кристалла отличается, вообще говоря, от его системы. Очевидно, что присоединение к решетке Бравэ новых узлов может привести только к исчезновению некоторых из осей или плоскостей симметрии, но не к появлению новых. Поэтому кристаллический класс содержит меньше или в крайнем случае столько же — элементов симметрии, чем соответствующая ему система, т. е. совокупность осей и плоскостей симметрии решетки Бравэ данного кристалла.

Из сказанного вытекает способ нахождения всех классов, относящихся к данной системе. Для этого надо найти все точечные группы, содержащие все или только некоторые из элементов симметрии системы. При этом, однако, может оказаться, что какая-либо из получающихся таким образом точечных групп состоит из элементов симметрии, содержащихся не только в одной, но в нескольких системах. Так, мы видели в предыдущем параграфе, что центром симметрии обладают все решетки Бравэ. Поэтому точечная группа С, содержится во всех системах. Тем не менее распределение кристаллических классов по системам оказывается обычно с физической точки зрения однозначным. Именно, каждый класс должен быть отнесен к наименее симметричной из всех тех систем, в которых он содержится. Так, класс С, должен быть отнесен к триклинной системе, не обладающей никакими другими элементами симметрии, кроме центра инверсии. При таком способе распределения классов кристалл, обладающий некоторой решеткой Бравэ, никогда не будет относиться к классу, для осуществления которого достаточной была бы решетка Бравэ более низкой системы (за одним только исключением — см. ниже).

Необходимость выполнения этого условия очевидна с физической точки зрения. Действительно, физически крайне невероятно, чтобы атомы кристалла, относящиеся к его решетке Бравэ, расположились более симметричным образом, чем этого требует симметрия кристалла. Более того, если бы даже такое расположение случайно осуществилось, то достаточно было бы любого, даже слабого, внешнего воздействия (скажем, нагревания), чтобы это расположение, как не связанное необходимым образом с симметрией кристалла, нарушилось бы.

Например, если бы кристалл, относящийся к классу, для осуществления которого была бы достаточна тетрагональная система, обладал кубической решеткой Бравэ, то уже незначительное воздействие оказалось бы способным удлинить или укоротить одно из ребер кубической ячейки, превратив ее в прямую призму с квадратным основанием.

Из этого примера видно, что существенную роль играет то обстоятельство, что решетка Бравэ высшей системы может быть переведена в решетку низшей системы уже посредством сколь угодно малой ее деформации. Есть, однако, одно исключение, когда такое превращение невозможно. Именно, гексагональная решетка Бравэ никакой бесконечно малой деформацией не может быть переведена в решетку более низкой по симметрии ромбоэдрической системы; действительно, из рис. 58 видно, что для превращения гексагональной решетки в ромбоэдрическую необходимо переместить узлы в чередующихся слоях на конечную величину — из вершин в центры треугольников. Это приводит к тому, что все классы ромбоэдрической системы осуществляются как с гексагональной, так и с ромбоэдрической решетками Бравэ.

Таким образом, для нахождения всех кристаллических классов надо начать с отыскания точечных групп наименее симметричной системы триклинной, переходя затем поочередно к системам более высокой симметрии и пропуская при этом те из содержащихся в них точечных групп, т.е. классов, которые уже были отнесены к низшим системам. Оказывается, что существует всего 32 класса; приводим список этих классов, распределенных по системам:

В каждом из написанных здесь рядов классов последний является наиболее симметричным и содержит все элементы симметрии соответствующей системы. Классы, симметрия которых совпадает с симметрией системы, называются голоэдрическими. Классы, обладающие числом различных преобразований симметрии (поворотов и отражений, включая в их число тождественное преобразование), вдвое и вчетверо меньшим, чем у голоэдерического класса, называются соответственно геми- и тетартоэдрическими.

Так, в кубической системе класс является голоэдрическим, классы — гемиэдрическими, а класс Т — тетартоэдрическим.

1
Оглавление
email@scask.ru