Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 5. Статистическая матрицаПереходя к вопросу об особенностях квантовой статистики, отметим, прежде всего, что чисто механический подход к задаче об определении поведения макроскопического тела в квантовой механике, разумеется, столь же безнадежен, как и в классической механике. При таком подходе требовалось бы решать уравнение Шредингера для системы, состоящей из всех частиц тела, — задача, если можно так выразиться, еще более безнадежная, чем интегрирование классических уравнений движения. Но даже, если бы оказалось возможным в том или ином случае найти общее решение уравнения Шредингера, было бы абсолютно невозможным выбрать и записать удовлетворяющее данным конкретным условиям задачи частное решение, характеризующееся определенными значениями грандиозного числа различных квантовых чисел. Больше того, мы увидим ниже, что для макроскопического тела понятие о стационарных состояниях вообще становится в известном смысле условным, — обстоятельство, имеющее существенное, принципиальное значение. Выясним предварительно некоторые особенности, которые характеризуют с чисто квантовомеханической точки зрения макроскопические тела по сравнению с системами, состоящими из сравнительно малого числа частиц. Эти особенности сводятся к необычайной густоте распределения уровней в спектре собственных значений энергии макроскопического тела. Причину такой густоты легко понять, если заметить, что благодаря колоссальному числу частиц в теле всякая энергия может быть, грубо говоря, «распределена» по различным частицам бесчисленным числом способов. Связь этого обстоятельства с густотой уровней становится в особенности ясной, если рассмотреть для примера макроскопическое тело, представляющее собой «газ» из N совершенно невзаимодействующих частиц, заключенных в некотором объеме. Уровни энергии такой системы представляют собой просто суммы энергий отдельных частиц, причем энергия каждой частицы пробегает бесконечный ряд дискретных значений. Ясно, что, выбирая всеми различными способами значения N членов этой суммы, мы получим во всяком сколько-нибудь заметном конечном участке спектра огромное число возможных значений энергии системы, которые, следовательно, будут расположены очень близко друг к другу. Можно показать (см. (7,18)), вообще, что число уровней в заданном конечном интервале энергетического спектра макроскопического тела возрастает с увеличением числа содержащихся в нем частиц по экспоненциальному закону, а расстояния между уровнями выражаются числами вида Вследствие чрезвычайной густоты уровней макроскопическое тело никогда не может фактически находиться в строго стационарном состоянии. Прежде всего ясно, что значение энергии системы во всяком случае будет «размытым» на величину порядка энергии взаимодействия системы с окружающими телами. Но последняя неизмеримо велика по сравнению с расстояниями между уровнями, причем не только для «квазизамкнутых» подсистем, но и для таких систем, которые мы со всякой иной точки зрения могли бы считать строго замкнутыми. В природе, разумеется, нет полностью замкнутых систем, взаимодействие которых с любым другим телом равно в точности нулю; всякое же фактически остающееся взаимодействие, которое может быть даже настолько малым, что не отражается ни на каких других свойствах системы, будет все еще чрезвычайно велико по сравнению с исчезающе малыми интервалами ее энергетического спектра. Но и помимо этого существует другая глубокая причина, в силу которой макроскопическое тело не может фактически находиться в стационарном состоянии. Как известно из квантовой механики, состояние системы, описывающееся некоторой волновой функцией, возникает в результате некоторого процесса взаимодействия этой системы с другой системой, которая с достаточной точностью подчиняется классической механике. Особыми свойствами обладает при этом возникновение стационарного состояния. Здесь необходимо различать значение энергии системы до взаимодействия Е и энергию Е состояния, возникающего в результате взаимодействия. Как известно (см. III, § 44), неточности
Обе погрешности В силу чрезвычайной малости последних мы видим, что для приведения макроскопического тела в какое-либо определенное стационарное состояние потребовалось бы неизмеримо большое время Вообще описание состояния макроскопического тела с помощью волновой функции неосуществимо, ибо фактически возможный запас данных о состоянии такого тела далеко не соответствует полному набору данных, необходимому для построения его волновой функции. Положение здесь в известном смысле аналогично тому, которое имеет место в классической статистике, где невозможность учета начальных условий для всех частиц тела приводит к невозможности точного механического описания его поведения; аналогия, впрочем, неполная, так как невозможность полного квантово-механического описания и отсутствие волновой функции, описывающей макроскопическое тело, могут, как мы видели, иметь гораздо более глубокие основания. Квантовомеханическое описание, основанное на неполном наборе данных о системе, осуществляется, как известно, посредством так называемой матрицы плотности (см. III, § 14). Знание матрицы плотности позволяет вычислять среднее значение любой величины, характеризующей систему, а также вероятности различных значений этих величин. Неполнота описания заключается при этом в том, что результаты различного рода измерений, которые можно предсказать на основании знания матрицы плотности с некоторой долей вероятности, могли бы, возможно, быть предсказаны с большей или даже полной достоверностью на основании полного набора сведений о системе, достаточного для построения ее волновой функции. Мы не станем выписывать здесь известных из квантовой механики формул, относящихся к матрице плотности в координатном представлении, так как это представление фактически не применяется в статистике. Покажем, однако, каким образом можно непосредственно ввести матрицу плотности в энергетическом представлении, необходимом для статистических применений. Рассмотрим некоторую подсистему и введем понятие о ее «стационарных состояниях» как о состояниях, получающихся при полном пренебрежении всеми взаимодействиями данной подсистемы с окружающими частями замкнутой системы. Пусть Предположим, что в данный момент времени подсистема находится в некотором полно описанном состоянии с волновой функцией Последнюю можно разложить по образующим полную систему функциям
Среднее значение любой величины
где
— матричные элементы величины f (f — соответствующий ей оператор). Переход от полного к неполному квантовомеханическому описанию подсистемы можно рассматривать в некотором смысле как усреднение по ее различным
Совокупность величин
Такая форма записи обладает тем преимуществом, что дает возможность производить вычисления с помощью произвольного полного набора взаимно ортогональных и нормированных волновых функций: след оператора не зависит от выбора системы функций, по отношению к которым определяются матричные элементы (см. III, § 12). Аналогичным образом видоизменяются и другие квантовомеханические выражения, в которые входят величины
Так, вероятность подсистеме находиться в
и удовлетворяют условию нормировки
(соответствующему условию Необходимо подчеркнуть, что усреднение по различным состояниям, которые мы ввели с целью сделать наглядным переход от полного квантовомеханического описания к неполному, имеет лишь весьма условный смысл. В частности, было бы совершенно неправильным считать, что описание с помощью матрицы плотности соответствует тому, что подсистема может с различными вероятностями находиться в различных Состояния квантовой системы, описывающиеся волновыми функциями, иногда называют чистыми состояниями в отличие от смешанных состояний, описывающихся матрицей плотности. Следует, однако, предостеречь от неправильного понимания последних в указанном выше смысле. Усреднение с помощью статистической матрицы, определяемое формулой (5,4), имеет двоякую природу. Оно включает в себя как усреднение, связанное с вероятностным характером квантового описания даже наиболее полного самого по себе, так и статистическое усреднение, необходимость в котором возникает в результате неполноты наших сведений о рассматриваемом объекте. В случае чистого состояния остается лишь первое усреднение, в статистических же случаях всегда присутствуют оба элемента усреднения. Необходимо, однако, иметь в виду, что эти элементы отнюдь не могут быть отделены друг от друга; все усреднение производится единым образом, и его невозможно представить как результат последовательно производимых чисто квантовомеханического и чисто статистического усреднений. Статистическая матрица заменяет в квантовой статистике функцию распределения классической статистики. Все сказанное в предыдущих параграфах применительно к классической статистике по поводу практически определенного характера делаемых ею предсказаний полностью относится и к квантовой статистике. Изложенное в § 2 доказательство стремления к нулю (при увеличении числа частиц) относительных флуктуаций аддитивных физических величин вообще не использовало каких-либо особенностей, специфических для классической механики, и потому полностью относится и к квантовому случаю. Мы можем, следовательно, по-прежнему утверждать, что макроскопические величины остаются практически равными своим средним значениям. В классической статистике функция распределения В силу самой природы квантовой механики, в основанной на ней статистике речь может идти лишь о нахождении распределения вероятностей для координат или импульсов в отдельности, а не тех и других вместе, поскольку координаты и импульсы частицы вообще не могут одновременно иметь определенных значений. Искомые распределения вероятностей должны учитывать как статистическую неопределенность, так и неопределенность, присущую квантовомеханическому описанию самому по себе. Для нахождения этих распределений снова воспользуемся примененным выше способом рассуждений. Предположим сначала, что тело находится в чистом квантовом состоянии с волновой функцией (5,1). Распределение вероятностей для координат определяете» при этом квадратом модуля:
так что вероятность координатам иметь значения в данном интервале
Но по определению матричных элементов можно написать:
Поэтому
Таким образом, находим следующую формулу для распределения вероятностей по координатам:
В написанном в такой форме выражении можно пользоваться в качестве функций Далее, определим распределение вероятностей для импульсов. Квантовые состояния, в которых все импульсы имеют определенные значения, соответствуют свободному движению всех частиц. Обозначим волновые функции этих состояний посредством (q), где индекс
где Любопытно, что оба распределения — по координатам и по импульсам могут быть получены интегрированием одной и той же функции
Проинтегрировав ее по
в согласии с общим определением (5,8). Отметим также, что функция (5,10) может быть выражена через координатную матрицу плотности
Подчеркнем, однако, что сказанное отнюдь не означает, что функцию
|
1 |
Оглавление
|