Главная > Теоретическая физика. Т. V. Статистическая физика.
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ГЛАВА I. ОСНОВНЫЕ ПРИНЦИПЫ СТАТИСТИКИ

§ 1. Статистическое распределение

Предмет статистической физики, или, как говорят для краткости, просто статистики, составляет изучение особого типа закономерностей, которым подчиняются поведение и свойства макроскопических тел, т. е. тел, состоящих из колоссального количества отдельных частиц — атомов и молекул. Общий характер этих закономерностей в значительной степени не зависит от того, какой механикой описывается движение отдельных частиц тела — классической или квантовой. Их обоснование, однако, требует в этих двух случаях различных рассуждений; для удобства изложения мы будем сначала проводить все рассуждения, предполагая, что справедлива классическая механика.

Составляя уравнения движения механической системы в числе, равном числу степеней свободы, и интегрируя их, мы принципиально можем получить исчерпывающие сведения о движении системы. Однако если нам приходится иметь дело с системой, хотя и подчиняющейся законам классической механики, но обладающей колоссальным числом степеней свободы, то при практическом применении методов механики мы сталкиваемся с необходимостью составить и решить такое же число дифференциальных уравнений, что представляется, вообще говоря, практически неосуществимым. Следует подчеркнуть, что если бы даже и можно было проинтегрировать в общем виде эти уравнения, то совершенно невозможно было бы подставить в общее решение начальные условия для скоростей и координат всех частиц.

На первый взгляд отсюда можно было бы заключить, что с увеличением числа частиц должны невообразимо возрастать сложность и запутанность свойств механической системы и что в поведении макроскопического тела мы не сможем найти и следов какой-либо закономерности. Однако это не так, и мы увидим в дальнейшем, что при весьма большом числе частиц появляются новые своеобразные закономерности.

Эти так называемые статистические закономерности, обусловленные именно наличием большого числа составляющих тело частиц, ни в какой степени не могут быть сведены к чисто механическим закономерностям.

Их специфичность проявляется в том, что они теряют всякое содержание при переходе к механическим системам с небольшим числом степеней свободы. Таким образом, хотя движение систем с огромным числом степеней свободы подчиняется тем же законам механики, что и движение систем из небольшого числа частиц, наличие большого числа степеней свободы приводит к качественно новым закономерностям.

Значение статистической физики в ряду других разделов теоретической физики определяется тем, что в природе мы постоянно встречаемся с макроскопическими телами, поведение которых по указанным причинам не может быть исчерпывающе описано чисто механическими методами и которые подчиняются статистическим закономерностям.

Переходя к формулированию основной задачи классической статистики, мы должны, прежде всего, ввести понятие фазового пространства, которым нам придется в дальнейшем постоянно пользоваться.

Пусть рассматриваемая макроскопическая механическая система имеет s степеней свободы. Другими словами, положение точек этой системы в пространстве характеризуется s координатами, которые мы будем обозначать буквами , где индекс i пробегает значения Тогда состояние этой системы в данный момент будет определяться значениями в этот же момент s координат и s соответствующих им скоростей . В статистике принято пользоваться для характеристики системы ее координатами и импульсами а не скоростями, так как это дает ряд весьма существенных преимуществ. Различные состояния системы можно математически представить точками в так называемом фазовом пространстве (являющемся, конечно, чисто математическим понятием); на координатных осях этого пространства откладываются значения координат и импульсов данной системы. При этом каждая система имеет свое собственное фазовое пространство, число измерений которого равно удвоенному числу ее степеней свободы. Всякая точка фазового пространства, соответствуя определенным значениям координат системы и ее импульсов изображает собой определенное состояние этой системы. С течением времени состояние системы изменяется, и, соответственно, изображающая состояние системы точка фазового пространства (мы будем ниже говорить просто «фазовая точка системы») будет описывать в нем некоторую линию, называемую фазовой траекторией.

Рассмотрим теперь какое-либо макроскопическое тело или систему тел. Предположим, что система замкнута, т. е. не взаимодействует ни с какими другими телами. Выделим мысленно из этой системы некоторую часть, весьма малую по сравнению со всей системой, но в то же время макроскопическую; ясно, что при достаточно большом числе частиц во всей системе число частиц в ее малой части может еще быть очень большим.

Такие относительно малые, но макроскопические части мы будем называть подсистемами. Подсистема есть опять механическая система, но уже отнюдь не замкнутая, а, напротив, испытывающая всевозможные воздействия со стороны остальных частей системы. Благодаря огромному числу степеней свободы этих остальных частей, эти взаимодействия будут иметь весьма сложный и запутанный характер. Поэтому и состояние рассматриваемой подсистемы будет меняться со временем весьма сложным и запутанным образом.

Точное решение задачи о поведении подсистемы возможно только путем решения задачи механики для всей замкнутой системы, т. е. путем составления и решения всех дифференциальных уравнений движения при данных начальных условиях, что, как уже отмечалось, представляет собой невыполнимую задачу. Но, к счастью, именно тот чрезвычайно сложный ход изменения состояния подсистем, который делает неприменимыми методы механики, дает возможность подойти к решению задачи с другой стороны.

Основой для этого подхода является то обстоятельство, что, в силу чрезвычайной сложности и запутанности внешних воздействий со стороны остальных частей, за достаточно большой промежуток времени выделенная нами подсистема побывает достаточно много раз во всех возможных своих состояниях. Точнее это обстоятельство надо сформулировать следующим образом. Обозначим посредством некоторый малый участок «объема» фазового пространства подсистемы, соответствующий значениям ее координат и импульсов лежащим в некоторых малых интервалах Можно утверждать, что в течение достаточно большого промежутка времени Т чрезвычайно запутанная фазовая траектория много раз пройдет через всякий такой участок фазового пространства. Пусть есть та часть полного времени Т, в течение которого подсистема «находилась» в данном участке фазового пространства . При неограниченном увеличении полного времени Т отношение будет стремиться к некоторому пределу

Эту величину можно, очевидно, рассматривать как вероятность того, что при наблюдении подсистемы в некоторый произвольный момент времени мы обнаружим ее находящейся в данном участке фазового пространства.

Переходя к бесконечно малому элементу фазового объема

мы можем ввести вероятность состояний, изображающихся точками в этом элементе, т. е. вероятность координатам и импульсам иметь значения, лежащие в заданных бесконечно малых интервалах между вероятность можно написать в виде

где есть функция всех координат и импульсов (мы будем обычно писать сокращенно или даже просто . Функцию , играющую роль «плотности» распределения вероятности в фазовом пространстве, называют функцией статистического распределения (или просто функцией распределения) данного тела. Функция распределения должна, очевидно, удовлетворять условию нормировки

(интеграл берется по всему фазовому пространству), выражающему собой просто тот факт, что сумма вероятностей всех возможных состояний должна быть равна единице.

Чрезвычайно существенным для статистики является следующее обстоятельство. Статистическое распределение данной подсистемы не зависит от начального состояния какой-либо другой малой части той же системы, так как влияние этого начального состояния будет в течение достаточно большого промежутка времени совершенно вытеснено влиянием остальных, гораздо более обширных частей системы. Оно не зависит также от начального состояния самой выделенной нами малой части, поскольку она с течением времени проходит через все возможные состояния и каждое из них может быть выбрано в качестве начального. Поэтому статистическое распределение для малых частей системы можно найти, не решая задачи механики для этой системы с учетом начальных условий.

Нахождение статистического распределения для любой подсистемы и является основной задачей статистики. Говоря о «малых частях» замкнутой системы, следует иметь в виду, что макроскопические тела, с которыми нам приходится иметь дело, обычно уже сами по себе являются такими «малыми частями» большой замкнутой системы, состоящей из этих тел вместе с внешней средой, в которую они погружены.

Если указанная задача решена и статистическое распределение данной подсистемы известно, то можно вычислить вероятности различных значений любых физических величин, зависящих от состояния этой подсистемы (т. е. от значений ее координат q и импульсов р). Мы можем также вычислить среднее значение любой такой величины получающееся путем умножения ее возможных значений на соответствующие вероятности и интегрирования по всем состояниям. Обозначая усреднение чертой над буквой, можно написать формулу

по которой вычисляются средние значения различных величин с помощью функции статистического распределения.

Усреднение с помощью функции распределения (или, как говорят, статистическое усреднение) освобождает нас от необходимости следить за изменением истинного значения физической величины со временем с целью определения ее среднего значения. В то же время очевидно, что в силу самого определения понятия вероятности, согласно формуле (1,1), статистическое усреднение полностью эквивалентно усреднению по времени. Последнее означало бы, что, следя за ходом изменения величины со временем, мы должны были бы построить функцию f — после чего искомое среднее значение определилось бы как

Из изложенного ясно, что выводы и предсказания о поведении макроскопических тел, которые позволяет делать статистика, имеют вероятностный характер. Этим статистика отличается от механики (классической), выводы которой имеют вполне однозначный характер. Следует, однако, подчеркнуть, что вероятностный характер результатов классической статистики сам по себе отнюдь не лежит в самой природе рассматриваемых ею объектов, а связан лишь с тем, что эти результаты получаются на основании гораздо меньшего количества данных, чем это нужно было бы для полного механического описания (не требуются начальные значения всех координат и импульсов).

Практически, однако, при применении статистики к макроскопическим телам ее вероятностный характер обычно совершенно не проявляется.

Дело в том, что если наблюдать любое макроскопическое тело (находящееся в стационарных, т. е. не зависящих от времени, внешних условиях) в течение достаточно большого промежутка времени, то окажется, что все характеризующие это тело физические величины являются практически постоянными (равными своим средним значениям) и лишь сравнительно очень редко испытывают сколько-нибудь заметные отклонения; при этом разумеется, речь идет о макроскопических величинах, характеризующих тело в целом или его отдельные макроскопические же части, но не отдельные частицы. Это основное для статистики обстоятельство следует из весьма общих соображений (изложенных в следующем параграфе) и тем более справедливо, чем сложнее и больше рассматриваемое тело. В терминах статистического распределения можно сказать, что если с помощью функции построить функцию распределения вероятностей различных значений величины , то эта функция будет иметь чрезвычайно резкий максимум при будучи сколько-нибудь заметно отличной от нуля лишь в самой непосредственной близости к точке максимума.

Таким образом, давая возможность вычислять средние значения величин, характеризующих макроскопические тела, статистика тем самым позволяет делать предсказания, оправдывающиеся с весьма большой точностью для подавляющей части любого промежутка времени настолько большого, чтобы полностью сгладилось влияние начального состояния тела. В этом смысле, предсказания статистики приобретают практически определенный, а не вероятностный характер. (Имея все это в виду, мы в дальнейшем при употреблении средних значений макроскопических величин почти никогда не будем писать черты над буквой).

Если замкнутая макроскопическая система находится в таком состоянии, в котором для любой ее части, являющейся самой по себе макроскопическим телом, макроскопические физические величины с большой относительной точностью равны своим средним значениям, то говорят, что система находится в состоянии статистического равновесия (о нем говорят также как о термодинамическом или тепловом равновесии). Из предыдущего видно, что если замкнутая макроскопическая система наблюдается в течение достаточно большого промежутка времени, то подавляющую часть этого промежутка она проводит в состоянии статистического равновесия.

Если в какой-нибудь начальный момент времени замкнутая макроскопическая система не находилась в состоянии статистического равновесия (например, была искусственно выведена из такого состояния внешними воздействиями, после чего была вновь предоставлена самой себе, т. е. вновь стала замкнутой системой), то в дальнейшем она обязательно перейдет в состояние равновесия. Промежуток времени, в течение которого должен обязательно произойти переход к статистическому равновесию, называют временем релаксации. Говоря выше о «достаточно больших» промежутках времени, мы по существу имели в виду времена, большие по сравнению со временем релаксации.

Теорию процессов, связанных с переходом в состояние равновесия, называют кинетикой; она не рассматривается собственно статистикой, изучающей системы, находящиеся в статистическом равновесии.

1
Оглавление
email@scask.ru