Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА I. ОСНОВНЫЕ ПРИНЦИПЫ СТАТИСТИКИ§ 1. Статистическое распределениеПредмет статистической физики, или, как говорят для краткости, просто статистики, составляет изучение особого типа закономерностей, которым подчиняются поведение и свойства макроскопических тел, т. е. тел, состоящих из колоссального количества отдельных частиц — атомов и молекул. Общий характер этих закономерностей в значительной степени не зависит от того, какой механикой описывается движение отдельных частиц тела — классической или квантовой. Их обоснование, однако, требует в этих двух случаях различных рассуждений; для удобства изложения мы будем сначала проводить все рассуждения, предполагая, что справедлива классическая механика. Составляя уравнения движения механической системы в числе, равном числу степеней свободы, и интегрируя их, мы принципиально можем получить исчерпывающие сведения о движении системы. Однако если нам приходится иметь дело с системой, хотя и подчиняющейся законам классической механики, но обладающей колоссальным числом степеней свободы, то при практическом применении методов механики мы сталкиваемся с необходимостью составить и решить такое же число дифференциальных уравнений, что представляется, вообще говоря, практически неосуществимым. Следует подчеркнуть, что если бы даже и можно было проинтегрировать в общем виде эти уравнения, то совершенно невозможно было бы подставить в общее решение начальные условия для скоростей и координат всех частиц. На первый взгляд отсюда можно было бы заключить, что с увеличением числа частиц должны невообразимо возрастать сложность и запутанность свойств механической системы и что в поведении макроскопического тела мы не сможем найти и следов какой-либо закономерности. Однако это не так, и мы увидим в дальнейшем, что при весьма большом числе частиц появляются новые своеобразные закономерности. Эти так называемые статистические закономерности, обусловленные именно наличием большого числа составляющих тело частиц, ни в какой степени не могут быть сведены к чисто механическим закономерностям. Их специфичность проявляется в том, что они теряют всякое содержание при переходе к механическим системам с небольшим числом степеней свободы. Таким образом, хотя движение систем с огромным числом степеней свободы подчиняется тем же законам механики, что и движение систем из небольшого числа частиц, наличие большого числа степеней свободы приводит к качественно новым закономерностям. Значение статистической физики в ряду других разделов теоретической физики определяется тем, что в природе мы постоянно встречаемся с макроскопическими телами, поведение которых по указанным причинам не может быть исчерпывающе описано чисто механическими методами и которые подчиняются статистическим закономерностям. Переходя к формулированию основной задачи классической статистики, мы должны, прежде всего, ввести понятие фазового пространства, которым нам придется в дальнейшем постоянно пользоваться. Пусть рассматриваемая макроскопическая механическая система имеет s степеней свободы. Другими словами, положение точек этой системы в пространстве характеризуется s координатами, которые мы будем обозначать буквами Рассмотрим теперь какое-либо макроскопическое тело или систему тел. Предположим, что система замкнута, т. е. не взаимодействует ни с какими другими телами. Выделим мысленно из этой системы некоторую часть, весьма малую по сравнению со всей системой, но в то же время макроскопическую; ясно, что при достаточно большом числе частиц во всей системе число частиц в ее малой части может еще быть очень большим. Такие относительно малые, но макроскопические части мы будем называть подсистемами. Подсистема есть опять механическая система, но уже отнюдь не замкнутая, а, напротив, испытывающая всевозможные воздействия со стороны остальных частей системы. Благодаря огромному числу степеней свободы этих остальных частей, эти взаимодействия будут иметь весьма сложный и запутанный характер. Поэтому и состояние рассматриваемой подсистемы будет меняться со временем весьма сложным и запутанным образом. Точное решение задачи о поведении подсистемы возможно только путем решения задачи механики для всей замкнутой системы, т. е. путем составления и решения всех дифференциальных уравнений движения при данных начальных условиях, что, как уже отмечалось, представляет собой невыполнимую задачу. Но, к счастью, именно тот чрезвычайно сложный ход изменения состояния подсистем, который делает неприменимыми методы механики, дает возможность подойти к решению задачи с другой стороны. Основой для этого подхода является то обстоятельство, что, в силу чрезвычайной сложности и запутанности внешних воздействий со стороны остальных частей, за достаточно большой промежуток времени выделенная нами подсистема побывает достаточно много раз во всех возможных своих состояниях. Точнее это обстоятельство надо сформулировать следующим образом. Обозначим посредством
Эту величину можно, очевидно, рассматривать как вероятность того, что при наблюдении подсистемы в некоторый произвольный момент времени мы обнаружим ее находящейся в данном участке Переходя к бесконечно малому элементу фазового объема
мы можем ввести вероятность
где
(интеграл берется по всему фазовому пространству), выражающему собой просто тот факт, что сумма вероятностей всех возможных состояний должна быть равна единице. Чрезвычайно существенным для статистики является следующее обстоятельство. Статистическое распределение данной подсистемы не зависит от начального состояния какой-либо другой малой части той же системы, так как влияние этого начального состояния будет в течение достаточно большого промежутка времени совершенно вытеснено влиянием остальных, гораздо более обширных частей системы. Оно не зависит также от начального состояния самой выделенной нами малой части, поскольку она с течением времени проходит через все возможные состояния и каждое из них может быть выбрано в качестве начального. Поэтому статистическое распределение для малых частей системы можно найти, не решая задачи механики для этой системы с учетом начальных условий. Нахождение статистического распределения для любой подсистемы и является основной задачей статистики. Говоря о «малых частях» замкнутой системы, следует иметь в виду, что макроскопические тела, с которыми нам приходится иметь дело, обычно уже сами по себе являются такими «малыми частями» большой замкнутой системы, состоящей из этих тел вместе с внешней средой, в которую они погружены. Если указанная задача решена и статистическое распределение данной подсистемы известно, то можно вычислить вероятности различных значений любых физических величин, зависящих от состояния этой подсистемы (т. е. от значений ее координат q и импульсов р). Мы можем также вычислить среднее значение любой такой величины
по которой вычисляются средние значения различных величин с помощью функции статистического распределения. Усреднение с помощью функции распределения (или, как говорят, статистическое усреднение) освобождает нас от необходимости следить за изменением истинного значения физической величины
Из изложенного ясно, что выводы и предсказания о поведении макроскопических тел, которые позволяет делать статистика, имеют вероятностный характер. Этим статистика отличается от механики (классической), выводы которой имеют вполне однозначный характер. Следует, однако, подчеркнуть, что вероятностный характер результатов классической статистики сам по себе отнюдь не лежит в самой природе рассматриваемых ею объектов, а связан лишь с тем, что эти результаты получаются на основании гораздо меньшего количества данных, чем это нужно было бы для полного механического описания (не требуются начальные значения всех координат и импульсов). Практически, однако, при применении статистики к макроскопическим телам ее вероятностный характер обычно совершенно не проявляется. Дело в том, что если наблюдать любое макроскопическое тело (находящееся в стационарных, т. е. не зависящих от времени, внешних условиях) в течение достаточно большого промежутка времени, то окажется, что все характеризующие это тело физические величины являются практически постоянными (равными своим средним значениям) и лишь сравнительно очень редко испытывают сколько-нибудь заметные отклонения; при этом разумеется, речь идет о макроскопических величинах, характеризующих тело в целом или его отдельные макроскопические же части, но не отдельные частицы. Это основное для статистики обстоятельство следует из весьма общих соображений (изложенных в следующем параграфе) и тем более справедливо, чем сложнее и больше рассматриваемое тело. В терминах статистического распределения можно сказать, что если с помощью функции Таким образом, давая возможность вычислять средние значения величин, характеризующих макроскопические тела, статистика тем самым позволяет делать предсказания, оправдывающиеся с весьма большой точностью для подавляющей части любого промежутка времени настолько большого, чтобы полностью сгладилось влияние начального состояния тела. В этом смысле, предсказания статистики приобретают практически определенный, а не вероятностный характер. (Имея все это в виду, мы в дальнейшем при употреблении средних значений макроскопических величин почти никогда не будем писать черты над буквой). Если замкнутая макроскопическая система находится в таком состоянии, в котором для любой ее части, являющейся самой по себе макроскопическим телом, макроскопические физические величины с большой относительной точностью равны своим средним значениям, то говорят, что система находится в состоянии статистического равновесия (о нем говорят также как о термодинамическом или тепловом равновесии). Из предыдущего видно, что если замкнутая макроскопическая система наблюдается в течение достаточно большого промежутка времени, то подавляющую часть этого промежутка она проводит в состоянии статистического равновесия. Если в какой-нибудь начальный момент времени замкнутая макроскопическая система не находилась в состоянии статистического равновесия (например, была искусственно выведена из такого состояния внешними воздействиями, после чего была вновь предоставлена самой себе, т. е. вновь стала замкнутой системой), то в дальнейшем она обязательно перейдет в состояние равновесия. Промежуток времени, в течение которого должен обязательно произойти переход к статистическому равновесию, называют временем релаксации. Говоря выше о «достаточно больших» промежутках времени, мы по существу имели в виду времена, большие по сравнению со временем релаксации. Теорию процессов, связанных с переходом в состояние равновесия, называют кинетикой; она не рассматривается собственно статистикой, изучающей системы, находящиеся в статистическом равновесии.
|
1 |
Оглавление
|