Главная > Теоретическая физика. Т. V. Статистическая физика.
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 78. Термодинамические величины классической плазмы

Изложенный в § 75 метод вычисления термодинамических величин неидеального газа заведомо непригоден для газа, состоящего из заряженных частиц, взаимодействующих по закону Кулона, так как в этом случае входящие в формулы интегралы расходятся. Поэтому такой газ требует особого рассмотрения.

Рассмотрим полностью ионизованный газ (плазма). Заряды его частиц будем обозначать посредством , где индекс а отличает различные сорта ионов (е — элементарный заряд, — положительные и отрицательные целые числа). Пусть далее есть число ионов сорта в единице объема газа. Газ в целом, разумеется, электрически нейтрален, т. е.

Будем считать, что газ слабо отклоняется от идеальности. Для этого во всяком случае необходимо, чтобы средняя энергия кулоновского взаимодействия двух ионов , где среднее расстояние между ионами) была мала по сравнению со средней кинетической энергией ионов Таким образом, должно быть или

Ввиду электронейтральности плазмы среднее значение энергии кулоновского взаимодействия ее частиц, если бы все они были равномерно распределены в пространстве независимо друг от друга, обратилось бы в нуль. Поэтому первые поправки в термодинамических величинах плазмы (по сравнению с их значениями в идеальном газе) возникают только при учете корреляции между положениями различных частиц. С целью напоминать об этом обстоятельстве, будем называть эти поправки корреляционными.

Начнем с определения поправки в энергии плазмы. Как известно из электростатики, энергия электрического взаимодействия системы заряженных частиц может быть написана в виде половины суммы произведений зарядов на потенциалы поля, создаваемого в точках их нахождения всеми остальными зарядами. В данном случае

где — потенциал поля, действующего на ион а-го сорта со стороны остальных зарядов. Для вычисления этих потенциалов поступим следующим образом.

Каждый из ионов создает вокруг себя некоторое (в среднем сферически - симметричное) неравномерно заряженное ионное облако. Другими словами, если выбрать какой-либо из ионов в газе и рассматривать плотность распределения остальных ионов относительно данного, то эта плотность будет зависеть только от расстояния от центра. Обозначим плотность распределения ионов (а-го сорта) в этом ионном облаке посредством . Потенциальная энергия каждого иона а-го сорта в электрическом поле вокруг данного иона есть , где — потенциал этого поля. Поэтому, согласно формуле Больцмана (38,6), имеем

Постоянный коэффициент положен равным так как вдали от центра (где ) плотность ионного облака должна переходить в среднюю ионную плотность в газе.

Потенциал поля в ионном облаке связан с плотностью зарядов в нем (равной ) электростатическим уравнением Пуассона

Формулы (78,4-5) составляют вместе систему уравнений самосогласованного электрического поля электронов и ионов.

При сделанном нами предположении об относительной слабости взаимодействия ионов энергия мала по сравнению с Т, и формулу (78,4) можно написать приближенно в виде

Подставив это выражение в (78,5) и имея в виду условие (78,1) нейтральности газа в целом, получим уравнение

где введено обозначение

Величина и имеет размерность обратной длины.

Центрально-симметричное решение уравнения (78,7) есть

В непосредственной близости от центра поле должно переходить в чисто кулоновское поле данного заряда (величину которого обозначим как ). Другими словами, при достаточно малых должно быть поэтому надо положить , так что искомое распределение потенциала дается формулой

Отсюда видно, кстати, что поле становится очень малым на расстояниях, больших по сравнению с . Поэтому длину можно рассматривать как определяющую размеры ионного облака, создаваемого данным ионом (ее называют также дебаевским радиусом). Все производимые здесь вычисления, конечно, предполагают, что этот радиус велик по сравнению со средними расстояниями между ионами (это условие совпадает, очевидно, с условием (78,2)).

Разлагая потенциал (78,9) в ряд при малых найдем

Опущенные члены обращаются при в нуль. Первый член есть кулоново поле самого данного иона. Второй же член есть, очевидно, потенциал, создаваемый всеми остальными ионами облака в точке нахождения данного иона; это и есть та величина, которая должна быть подставлена в формулу (78,3): .

Таким образом, мы получаем следующее выражение для корреляционной части энергии плазмы:

(78,10)

или, вводя полные числа различных ионов в газе :

Эта энергия обратно пропорциональна квадратному корню из температуры и из объема газа.

Интегрируя термодинамическое соотношение можно найти из соответствующую добавку к свободной энергии:

(постоянную интегрирования надо положить равной нулю, так как при должно быть ). Отсюда давление

где . Термодинамический потенциал Ф можно получить из F с помощью теоремы о малых добавках (как это было сделано и в § 74), т. е. рассматривая второй член в (78,12) как малую добавку к и выразив ее с нужной точностью через переменные :

1
Оглавление
email@scask.ru