Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА III. РАСПРЕДЕЛЕНИЕ ГИББСА§ 28. Распределение ГиббсаПерейдем теперь к поставленной в главе I задаче о нахождении функции распределения для любого макроскопического тела, являющегося малой частью какой-либо большой замкнутой системы (подсистемой). Наиболее удобный и общий способ подхода к решению этой задачи основан на применении ко всей системе микроканонического распределения. Выделим из замкнутой системы интересующее нас тело и будем рассматривать систему как составленную из двух частей: изданного тела и всей остальной ее области, которую мы будем называть по отношению к телу «средой». Микроканоническое распределение (6,6) напишется в виде
где Нашей целью является нахождение вероятности Искомую вероятность
Пусть Поскольку подынтегральное выражение зависит только от Е, можно перейти к интегрированию по
Производную
где
Благодаря наличию
Учтем теперь, что вследствие малости тела его энергия
Но производная от энтропии S по энергии есть не что иное, как Таким образом, получаем окончательно для
где А — не зависящая от Нормировочная постоянная А определяется условием
Среднее значение любой физической величины f, характеризующей данное тело, может быть вычислено с помощью распределения Гиббса по формуле
В классической статистике выражение, в точности соответствующее формуле (28,3), получается для функции распределения в фазовом пространстве:
где
На практике часто приходится иметь дело со случаями, когда квазиклассическим является не все микроскопическое движение частиц, а лишь движение, соответствующее части степеней свободы, в то время как по остальным степеням свободы движение является квантовым (так, например, может быть квазиклассическим поступательное движение молекул при квантовом характере внутримолекулярного движения атомов). В таком случае уровни энергии тела можно написать в виде функций от квазиклассических координат и импульсов:
где Наконец, необходимо сделать следующее замечание по поводу круга вопросов, для решения которых можно применять распределение Гиббса. Мы все время говорили о последнем как о статистическом распределении для подсистемы, каковым оно в действительности и является. Весьма важно, однако, что это же распределение можно с полным успехом применять и для определения основных статистических свойств замкнутых тел. Действительно, такие свойства тела, как значения его термодинамических величин или распределения вероятностей для координат и скоростей отдельных его частиц, очевидно, не зависят от, того, рассматриваем ли мы тело как замкнутое или как помещенное в воображаемый термостат (§ 7). В последнем случае, однако, тело становится «подсистемой» и распределение Гиббса применимо к нему буквально. Отличие замкнутого тела от незамкнутого проявляется при применении распределения Гиббса по существу лишь при рассмотрении сравнительно мало интересного вопроса о флуктуациях полной энергии тела. Распределение Гиббса дает для средней флуктуации этой величины отличное от нуля значение, которое для тела, находящегося в среде, имеет реальный смысл, а для замкнутого тела совершенно фиктивно, так как энергия такого тела по определению постоянна и не флуктуирует. Возможность применения (в указанном смысле) распределения Гиббса к замкнутым телам видна также и из того, что оно по существу очень слабо отличается от микроканонического (и в то же время несравненно удобнее для проведения конкретных расчетов). Действительно, микроканоническое распределение эквивалентно, грубо говоря, признанию равновероятными всех микросостояний тела, отвечающих заданному значению его энергии. Каноническое же распределение «размазано» по некоторому интервалу значений энергии, ширина которого (порядка величины средней флуктуации энергии), однако, для макроскопического тела ничтожно мала.
|
1 |
Оглавление
|