Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 73. Отрицательные температурыМы рассмотрим теперь некоторые своеобразные явления, связанные со свойствами парамагнитных диэлектриков. Последние характеризуются тем, что их атомы обладают более или менее свободно ориентирующимися механическими (а с ними и магнитными) моментами. Взаимодействие этих моментов (магнитное или обменное в зависимости от их взаимных расстояний) приводит к появлению нового «магнитного» спектра, налагающегося на обычный диэлектрический спектр. Этот новый спектр целиком заключен в конечном энергетическом интервале — интервале порядка величины энергии взаимодействия магнитных моментов всех атомов тела, расположенных на определенных расстояниях друг от друга в узлах кристаллической решетки; отнесенная к одному атому, эта энергия может составлять от десятых долей до сотни градусов. В этом отношении магнитный энергетический спектр существенно отличается от обычных спектров, которые благодаря наличию кинетической энергии частиц простираются до сколь угодно больших значений энергии. В связи с этой особенностью можно рассмотреть область температур, больших по сравнению со всем допустимым интервалом значений энергии, приходящейся на один атом. Связанная с магнитной частью спектра свободная энергия Пусть Е — уровни энергии системы взаимодействующих моментов. Тогда имеем для интересующей нас статистической суммы
Здесь, как и в § 32, формальное разложение в ряд по степеням, вообще говоря, не малой величины
Наконец, логарифмируя и снова разлагая с той же точностью в ряд, получим для свободной энергии следующее выражение:
Отсюда энтропия
энергия
и теплоемкость
Будем рассматривать совокупность закрепленных в узлах решетки и взаимодействующих друг с другом атомных моментов как изолированную систему, отвлекаясь от ее взаимодействия с колебаниями решетки, которое обычно очень слабо. Формулы (73,1-4) определяют термодинамические величины этой системы при высоких температурах. Приведенное в § 10 доказательство положительности температуры было основано на условии устойчивости системы по отношению к возникновению в ней внутренних макроскопических движений. Но рассматриваемая нами здесь система моментов по самому своему существу вообще неспособна к макроскопическому движению, и потому указанные соображения к ней неприменимы. Неприменимо также и доказательство, основанное на условии нормировки распределения Гиббса (§ 36), - поскольку в данном случае система обладает лишь конечным числом конечных же уровней энергии, то нормировочная сумма сходится при любом значении Т. Таким образом, мы приходим к любопытному результату, что система взаимодействующих моментов может обладать как положительными, так и отрицательными температурами. Проследим за свойствами системы при различных температурах. При температуре Температура
Рис. 10. Таким образом, область отрицательных температур лежит не «под абсолютным нулем», а «над бесконечной температурой». В этом смысле можно сказать, что отрицательные температуры «более высоки», чем положительные. В соответствии с таким утверждением находится и тот факт, что при взаимодействии системы, обладающей отрицательной температурой, с системой, температура которой положительна (с колебаниями решетки), энергия должна переходить от первой ко второй, в чем легко убедиться тем же способом, каким рассматривался в § 9 обмен энергией между телами с различной температурой. Состояния с отрицательной температурой могут быть фактически осуществлены в парамагнитной системе ядерных моментов в кристалле, в котором время релаксации
|
1 |
Оглавление
|