Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 2. СВЯЗЬ ФУНКЦИЯ КОМПЛЕКСНОГО ПЕРЕМЕННОГО С ЗАДАЧАМИ МАТЕМАТИЧЕСКОЙ ФИЗИКИСвязь с задачами гидродинамики.Условия Коши — Римана связывают между собой задачи математической физики и теорию функций комплексного переменного. Проиллюстрируем это на задачах гидродинамики. Среди всех возможных движений жидкой среды важпую роль играют установившиеся движения. Так называются движения жидкости, для которых не меняется со временем картина распределения скоростей в пространстве. Так, например, наблюдатель, стоящий на мосту и наблюдающий за обтеканием мостового быка рекой, видит установившуюся картину обтекания. Иногда течение становится установившимся для наблюдателя, движущегося вместе с некоторым телом. Если при движении парохода за возмущенным движением воды будет наблюдать человек, стоящий на берегу, то для него картина движения воды не будет установившейся, но для наблюдателя, находящегося на пароходе, течение воды уже будет установившимся. Для пассажира, сидящего в самолете, который летит с постоянной скоростью, возмущенное самолетом движение воздуха тоже будет установившимся. При установившемся движении вектор скорости V частицы жидкости, проходящей через заданную точку пространства, не меняется со временем. Если движение — установившееся для движущегося наблюдателя, то вектор скорости не будет меняться со временем в точках, имеющих постоянные координаты в системе координат, (движущейся вместе с наблюдателем. Среди движений жидкости большое значение получил класс плоско-параллельных движений. Это — течения, при которых скорости частиц всюду параллельны некоторой плоскости, а картина распределевия скоростей одинакова во всех плоскостях, параллельных заданной плоскости. Если мы представим себе беспредельную массу жидкости, обтекающую цилиндрическое тело перпендикулярно его образующей, то во всех плоскостях, перпендикулярных образующей, картина распределения скоростей будет одинакова и движение жидкости будет плоскопараллельным. Иногда движение жидкости можно приближенно рассчитывать как [плоскопараллельное. Например, если мы хотим определить картину скоростей течения воздуха в плоскости, перпендикулярной крылу самолета, то в случае, когда эта плоскость расположена не очень близко к фюзеляжу или к концу крыла, движение воздуха можно приближенно считать плоско параллельным. Покажем, как может быть применена теория функций комплексного переменного к изучению установившихся плоскопараллельных течений жидкости. При этом мы будем считать, что жидкость несжимаема, т. е. что ее плотность не меняется с изменением давления. Таким свойством обладает, например, вода, но оказывается, что даже воздух можно при изучении его движений считать несжимаемым, если скорости движения не очень велики. Гипотеза о несжимаемости воздуха не вносит заметных искажений, если скорости движения не превосходят Течение жидкости характеризуется распределением скоростей ее частиц. Если течение плоскопараллельное, то достаточно знать скорости частиц в одной из плоскостей, параллельно которым происходит движение. Будем обозначать через то траектории частиц можно определить, пользуясь тем, что скорость частицы всегда касательна к траектории. Это дает
Полученное уравнение есть дифференциальное уравнение для траекторий. Траектории частиц установившегося движения носят название ланий тока. Через каждую точку плоскости движения проходит одна линия тока. Важную роль играет понятие функции тока. Фиксируем какую-нибудь линию тока
Рис. 5. Функцией тока называется функция Функция тока определена с точностью до произвольной постоянной, зависящей от выбора начальной линии тока
Компоненты скорости течения выражаются через производные от функции тока. Чтобы получить эти выражения, рассмотрим канал, образованный линией тока С, проходящей через заданную точку и двумя параллельными плоскости движения плоскостями, отстоящими на расстоянии, равном единице. Вычислим количество жидкости С одной стороны, в силу определения функции тока
С другой стороны,
Рис. 6. Разделив это равенство на
Аналогичное рассуждение дает для второй компоненты
Для определения поля скоростей, наряду с функцией тока, вводят еще вторую функцию. Ее введение связано с рассмотрением вращения малых частиц жидкости. Если мы вообразим, что отдельпая малая частица жидкости затвердела, то она, вообще говоря, будет иметь вращательное движение. Однако если движение жидкости возникло из покоя и внутреннее трение между частицами жидкости отсутствует, то оказывается, что вращение частиц в жидкости не может возникнуть. Такие движения без вращения частиц носят название безвихревых и играют основную роль при изучении движения тел в жидкости. В гидромеханике устанавливается, что для безвихревых движений существует вторая функция
функция Сравнение формул для компонент скорости по функции тока и по потенциалу скоростей приводит к следующему замечательному выводу. Потенциал скоростей
Другими словами, функция комплексного переменного
есть дифференцируемая функция комплексного переменного. Обратно: если мы будем исходить из произвольной дифференцируемой функции комплексного переменного, то ее действительная и мнимая части удовлетворяют условиям Коши—Римана и могут быть рассматриваемы как потенциал скоростей и функция тока течения несжимаемой жидкости. Функция Рассмотрим еще смысл производной
В силу (27) и (26) находим
или, переходя к сопряженным комплексным величинам,
где черта над показывает, что надо взять величину, сопряженную с ней. Таким образом, вектор скорости течения равен сопряженной величине производной характеристической функции течения.
|
1 |
Оглавление
|