Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 6. ОБОБЩЕННЫЕ РЕШЕНИЯКруг задач, в которых явление описывается непрерывно дифференцируемыми функциями, удовлетворяющими дифференциальным уравнениям, можно существенно расширить, вводя в рассмотрение разрывные решения этих уравнений. В ряде случаев заранее ясно, что рассматриваемая задача не может иметь дважды непрерывно дифференцируемых решений, т. е. с точки зрения описанной в предыдущих параграфах классической постановки такая задача не имеет решения. Тем не менее соответствующий физический процесс происходит, хотя мы и не можем найти описывающие его функции в наперед заданном классе дважды дифференцируемых функций. Приведем этому простые примеры. 1) Если струна составлена из двух кусков разной плотности, то в уравнении
коэффициент а равен на соответствующих участках различным постоянным, и поэтому уравнение (24) вообще не будет иметь классических (дважды непрерывно дифференцируемых) решений. 2) Пусть коэффициент а постоянен, но в начальном положении струна имеет форму ломаной, задаваемой уравнением и
(здесь и далее 3) Если резко ударить по какому-нибудь маленькому участку струны, то вызванные этим воздействием колебания описываются уравнением
где Уже приведенные примеры показывают, что требование непрерывности производных у искомого решения сильно сужает круг разрешимых задач. Поиски более широкого круга разрешимых задач пошли прежде всего по пути допущения разрыров первого рода у старших производных тех функций, которые служат решениями задачи, причем уравнению такие функции должны удовлетворять всюду, кроме точек разрыва. Оказалось, что решения уравнения типа Однако второй пример со струной показывает, что необходимо также рассматривать решения, у которых могут быть разрывны первые производные, а в случае, например, звуковых и световых колебаний — и решения, которые сами имеют разрывы. Первый вопрос, встающий перед исследователями при введении разрывных решений, заключается в том, чтобы выяснить, какие разрывные функции следует считать физически допустимыми решениями того или иного уравнения, той или иной поставленной для этого уравнения задачи. Можно ли, например, считать произвольную кусочно-постоянную функцию «единым решением» уравнения Лапласа или волнового уравнения, поскольку она вне линий разрыва удовлетворяет уравнениям. Выясняя этот вопрос, следует прежде всего позаботиться о том, чтобы в том более широком классе функций, которому должны принадлежать все допустимые решения, амела место теорема единственности. Довольно ясно, что если допустить, например, произвольные кусочно-гладкие функции, то это требование не будет выполнено. Первый по времени принцип выделения допустимых решений заключался в том, что эти функции должны быть пределами (в том или ином смысле) для классических решений того же уравнения. Так, в приведенном выше примере 2 решение уравнения (24), отвечающее функции 8 дальнейшем, вместо этого принципа, был выдвинут следующий: допустимое решение и должно удовлетворять вместо уравнения Это тождество получается так: умножим обе части уравнения по частям так, чтобы в него не входили производные от
С. Л. Соболевым было доказано, что для уравнений с постоянными коэффициентами оба принципа выделения допустимых или, как теперь принято называть, — обобщенных решений, эквивалентны. Однако, для уравнений с переменными коэффициентами первый принцип может вообще оказаться неприменимым. Такие уравнения могут вообще не иметь классических решений (см. пример 1). Второй же принцип дает возможность выделять обобщенные решения при весьма широких предположениях о дифференциальных свойствах коэффициентов уравнения. Правда, этот принцип имеет на первый взгляд излишне формальный, чисто математический характер и не дает прямого указания на то, как следует ставить задачи, аналогичные классическим задачам. Мы приведем здесь его видоизменение, которое, как нам кажется, физически более оправдано, так как непосредственно связано с известным принципом Гамильтона. Как известно, анализ выводов различных уравнений математической физики привел в первой половине XIX в. к открытию нового закона — так называемого принципа Гамильтона. Исходя из этого принципа оказалось возможным единообразным путем получать все известные уравнения математической физики. Проиллюстрируем это на примере уже рассмотренной в § 3 задачи о колебании ограниченной, закрепленной на концах струны. Прежде всего составим так называемую функцию Лагранжа
Согласно принципу Гамильтона, интеграл
принимает наименьшее значение для функции
где Равенство (25) и есть то условие, которому должна подчиняться искомая функция что и
которое совпадает с (24), если Нетрудно видеть, что любое решение и Для выделения какого-то определенного режима колебания струны следует, помимо граничных условий
поставить еще и начальные
Если решение ищется в классе один раз непрерывно дифференцируемых функций, то условия (27) и (28) можно ставить отдельно от (25), как дополнительные требования. Если же предполагаемое решение «хуже», то эти условия в указанном виде теряют смысл и их следует частично или полностью включить в интегральное тождество (25). Пусть, например, и
при всех непрерывных
должно быть конечным. Такое ограничение на функцию и, а потому и на ее возможные изменения Ф является естественным следствием принципа Гамильтона. Тождество (29) есть не что иное, как условие равенства нулю первой вариации функционала
Поэтому задача о колебании закрепленной струны в рассматриваемом случае может быть поставлена как задача разыскания минимума функционала Приведенное здесь видоизменение принципа Гамильтона позволило не только расширить класс допустимых решений уравнения (24), но и поставить для них определенную краевую задачу. То, что введенные обобщенные решения или какие-либо их производные могут быть определены не во всех точках пространства, не приводит к несоответствию с экспериментом. На это неоднократно указывал Н. М. Гюнтер, немало Если, например, мы решаем задачу на определение течения жидкости в каком-нибудь канале, то в классической постановке подлежат вычислению вектор скорости течения и давление в каждой точке потока. Но практически речь всякий раз идет не о давлении в точке, а о давлении потока на какую-нибудь площадку, не о векторе скорости в данной точке, а о количестве жидкости, протекающей за единицу времени через какую-нибудь площадку. Определение обобщенных решений и предполагает, по существу, вычисление именно этих величин, имеющих прямой физический смысл. Для того чтобы большее число задач было разрешимо, следует искать решения среди функций, принадлежащих по возможности к наиболее широкому классу функций, но такому, в котором еще имели бы место теоремы единственности. Нередко такой класс диктуется физической сущностью задачи. Так, в квантовой механике реальный смысл имеет не функция состояния Прогресс математической физики за последние тридцать лет во многом связан с переходом к этим новым постановкам задач и с созданием математического аппарата, необходимого для их решения. Одно из центральных мест в этом аппарате занимают так называемые теоремы вложения С. Л. Соболева. Особенно удобными методами разыскания обобщенных решений в том или ином классе функций являются: метод конечных разностей, прямые методы вариационного исчисления (методы Ритца и Трефтца), метод Галеркина и функциональнооператорные методы. В основе последних лежит изучение свойств преобразований, порожденных той или иной задачей, О методе конечных разностей и методе Галеркина уже говорилось в § 5. Здесь мы поясним идею, лежащую в основе прямых методов вариационного исчисления. Рассмотрим задачу на определение положения равновесия упругой мембраны с жестко закрепленным краем. Согласно принципу о минимуме потенциальной энергии в положении устойчивого равновесия, функция
по сравнению со всеми другими непрерывно дифференцируемыми функциями Доказательство существования функции и, реализующей минимум
где В заключение заметим, что в зтой главе дано описание лишь простейших линейных задач механики и оставлены в стороне многие еще далеко не до конца разработанные вопросы, связанные с более общими уравнениями в частных производных. ЛИТЕРАТУРА(см. скан)
|
1 |
Оглавление
|