Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Замкнутые и открытые множества.Одна из основных задач теории точечных множеств — изучение свойств различных типов точечных множеств. Мы познакомим читателя с этой теорией на двух примерах. Именно, мы изучим здесь свойства так называемых замкнутых и открытых множеств. Множество называется замкнутым, если оно содержит все свои предельные точки. Если множество не имеет ни одной предельпой точки, то его тоже принято считать замкнутым. Кроме своих предельных точек, замкнутое множество может также содержать изолированные точки. Множество называется открытым, если каждая его точка является для него внутренней. Приведем примеры замкнутых и открытых множеств. Всякий отрезок замкнуты, а несобственные интервалы
замкнуто; это множество имеет единственную предельную точку Наша задача состоит в том, чтобы выяснить, как устроено произвольное замкнутое или открытое множество. Для этого нам понадобится ряд вспомогательных фактов, которые мы примем без доказательства. 1. Пересечение любого числа замкнутых множеств замкнуто. 2. Сумма любого числа открытых множеств есть открытое множество. 3. Если замкнутое множество ограничено сверху, то оно содержит свою верхнюю грань. Аналогично, если замкнутое множество ограничено снизу, то оно содержит свою нижнюю грань. Пусть Е — произвольное множество точек на прямой. Назовем дополнением множества Е и обозначим через 4. Если множество F замкнуто, то его дополнение Предложение 4 показывает, что между замкнутыми и открытыми множествами имеется весьма тесная связь: одни являются дополнениями других. В силу этого достаточно изучить одни замкнутые или одни открытые множества. Знание свойств множеств одного типа позволяет сразу выяснить свойства множеств другого типа. Например, всякое открытое множество получается путем удаления из прямой некоторого замкнутого множества. Приступаем к изучению свойств замкнутых множеств. Введем одно определение. Пусть F — замкнутое множество. Интервал Обозначим через
Каждое из множеств F замкнуто. Поэтому, в силу предложения 1, множество Из предыдущего следует, что всякое замкнутое множество на прямой получается путем удаления из прямой некоторого числа интервалов, а именно смежных интервалов множества В силу предложения 4, отсюда сразу вытекает, что всякое открытое множество на прямой представляет собой не более чем счетную сумму непересекающихся интервалов. В силу предложений 1 и 2, ясно также, что всякое множество, устроенное, как указано выше, действительно является замкнутым (открытым). Как видно из нижеследующего примера, замкнутые множества могут иметь весьма сложное строение. Канторово совершенное множество. Построим одно специальное замкнутое множество, обладающее рядом замечательных свойств. Прежде всего удалим из прямой несобственные интервалы Из каждого из оставшихся двух отрезков Рассмотрим некоторые свойства этого множества. Множество Р замкнуто, так как оно образуется путем удаления из прямой некоторого множества непересекающихся интервалов. Множество Р не пустот во всяком случае в нем содержатся концы всех выброшенных интервалов. Замкнутое множество F называется совершенным, если оно не содержит изолированных точек, т. е. если каждая его точка является предельной точкой. Покажем, что множество Р совершенно. Действительно, если бы некоторая точка х была изолированной точкой множества Р, то она служила бы общим концом двух смежных интервалов этого множества. Но, согласно построению, смежные интервалы множества Р не имеют общих концов. Множество Р не содержит ни одного интервала. В самом деле, допустим, что некоторый интервал Можно показать, что множество Р имеет мощность континуума. В частности, отсюда следует, что канторово совершенное множество содержит, кроме концов смежных интервалов, еще и другие точки. Действительно, концы смежных интервалов образуют лишь счетное множество. Разнообразные типы точечных множеств постоянно встречаются в самых различных разделах математики, и знание их свойств совершенно необходимо при исследовании многих математических проблем. Особенно большое значение имеет теория точечных множеств для математического анализа и топологии. Приведем несколько примеров появления точечных мпожеств в классических разделах анализа. Пусть Математическая дисциплина, занимающаяся изучением строения точечных множеств, называется дескриптивной теорией множеств. Весьма большие заслуги в деле развития дескриптивной теории множеств принадлежат советским математикам — Н. Н. Лузину и его ученикам П. С. Александрову, М. Я. Суслину, А. Н. Колмогорову, М. А. Лаврентьеву, П. С. Новикову, Л. В. Келдыш, А. А. Ляпунову и др. Исследования Н. Н. Лузина и его учеников показали, что имеется глубокая связь между дескриптивной теорией множеств и математической логикой. Трудности, возникающие при рассмотрении ряда задач дескриптивной теории множеств (в частности, задач об определении мощности тех или иных множеств), являются трудностями логической природы. Напротив, методы математической логики позволяют более глубоко проникнуть в некоторые вопросы дескриптивной теории множеств.
|
1 |
Оглавление
|