Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Взаимно однозначные преобразования.При рассмотрении всевозможных преобразований одного и того же множества прежде всего замечается фундаментальное различие между взаимно однозначными отображениями множества на себя и отображениями не взаимно однозначными. Преобразование А множества М называется взаимно однозначным отображением этого множества на себя, если не только каждому элементу множества М отвечает определенный единственный элемент множества М, — это содержится в определении преобразования, — но если также для каждого элемента у множества М существует один и только один элемент х, который переходит в элемент у. Иными словами, преобразование А является взаимно однозначным, если «уравнение» Все рассмотренные выше преобразования пространств — отражения, повороты и переносы — являются взаимно однозначными, так как при этом не только для каждой точки X существует точка, в которую X переходит, но также существует единственная точка, которая переходит в X. Легко привести и противоположные примеры; так, преобразование множества чисел 1, 2, 3, 4, заданное таблицей необходимо и достаточно, чтобы в нижней строке таблицы встречался каждый элемент множества и притом только один раз. Иногда в математике рассматривают и не взаимно однозначные преобразования. Например, известно, какое большое значение имеет операция проектирования пространства на плоскость. Это преобразование не взаимно однозначное, так как при нем в каждую точку проектируется не одна, а целый ряд точек пространства. Но в большинстве случаев приходится иметь дело лишь с взаимно однозначными преобразованиями; эти преобразования, в частности, играют основную роль, когда рассматриваются физические процессы, при которых элементы изучаемой системы не сливаются друг с другом, не уничтожаются и не возникают. В дальнейшем, говоря о преобразованиях, мы будем подразумевать преобразования взаимно однозначные; их часто называют также подстановками, особенно в случаях, когда речь идет о преобразованиях конечного множества. Для каждого (взаимно однозначного) преобразования А множества М на себя легко определить обратное преобразование Иногда может случиться, что обратное преобразование будет совпадать с данным. Таким свойством, в частности, обладают отражения относительно плоскости или точки в пространстве. Тем же свойством обладает подстановка Заметим, что говорить об обратном преобразовании для преобразований не взаимно однозначных нельзя, так как эти преобразования в отдельные элементы могут или ничего
|
1 |
Оглавление
|