Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 2. ГИЛЬБЕРТОВО ПРОСТРАНСТВО (БЕСКОНЕЧНОМЕРНОЕ ПРОСТРАНСТВО)Связь с n-мерным пространством.Введение понятия
Рис. 3. Рассмотрим следующий классический пример такой задачи (рис. 3). Пусть массу Расположим теперь на нити
Рис. 4. Само исследование малых колебаний, проведенное в таком изложении, оказывается тесно связанным с основными фактами геометрии Рассмотрим теперь задачу о малых колебаниях натянутой между точками А и В струны. При этом мы имеем в виду идеализированную струну, т. е. гибкую нить, обладающую конечной массой, непрерывно распределенной вдоль нити. В частности, под однородной струной понимается струна, плотность которой постоянна. Так как масса распределена вдоль струны непрерывно, то положение струны уже нельзя задать конечным числом чисел Положение нити с
Рис. 5. к нулю, то в пределе мы получим непрерывное распределение масс вдоль нити, т. е. идеализированную струну. Ломаная линия, изображающая положение нити с грузами, перейдет при этом в кривую, изображающую положение струны (рис. 5). Мы видим, таким образом, что между задачами о колебании нити с грузами и о колебании струны существует тесная связь. В первой задаче положение системы задавалось точкой или вектором Рассмотренный выше пример задачи о колебаниях, к которому мы еще вернемся в § 4, подсказывает нам, как следует вводить основные понятия в бесконечномерном пространстве.
|
1 |
Оглавление
|