Главная > Математика. Ее содержание, методы и значение. Том 3
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 6. РАЗВИТИЕ ТОПОЛОГИИ

Топология замкнутых поверхностей — единственная область топологии, которая была более или менее разработана уже к концу прошлого столетия. Построение этой теории было связано с развитием в течение XIX в. теории функций комплексного переменного. Эта последняя, составляя одно из значительнейших явлений в истории математики прошлого века, строилась несколькими различными методами. Одним из наиболее плодотворных в смысле понимания существа изучаемых явлений оказался геометрический метод Римана. Метод Римана, с большой убедительностью показавший, что в общей теории функций комплексного переменного невозможно ограничиться одними лишь однозначными функциями, привел к построению так называемых римановых поверхностей. Эти поверхности в простейшем случае алгебраических функций комплексного переменного всегда оказываются замкнутыми ориентируемыми поверхностями. Изучение их топологических свойств в известном смысле эквивалентно изучению данной алгебраической функции. Дальнейшее развитие идей Римана было произведено Пуанкаре, Клейном и их последователями и привело к установлению неожиданных и глубоких связей между теорией функций, топологией замкнутых поверхностей и неэвклидовой геометрией, а именно теорией группы движений на плоскости Лобачевского Таким образом, впервые топология оказалась органически включенной в целый сгусток принципиально значительных проблем, относящихся к весьма различным областям математики.

При дальнейшем развитии этой проблематики оказалось, что одной топологии поверхностей недостаточно, что необходимо решение и определенных задач -мерной топологии. Первой из них была задача о топологической инвариантности числа измерений пространства. Задача эта заключается в том, чтобы доказать невозможность топологически отобразить -мерное эвклидово пространство на -мерное при . Эта

трудная задача была решена в 1911 г. Брауэром. В связи с ее решением были открыты новые топологические методы, которые привели к быстрому построению начал теории непрерывных отображений многомерных многообразий и теории векторных полей на них. Во всех этих исследованиях оказались необходимыми и первые основные понятия так называемой теоретико-множественной топологии, возникшей на почве общей теории множеств, построенной Кантором в последней четверти прошлого века.

В теоретико-множественной топологии сам объект исследования, т. е. класс рассматриваемых геометрических фигур, чрезвычайно расширился и охватил если не все вообще множества, лежащие в эвклидовых пространствах, то по крайней мере все замкнутые множества. В быстром развитии нового теоретико-множественного направления топологии приняли участие ученые разных стран, причем особо следует отметить польскую топологическую школу.

Существенно новое направление развитие теоретико-множественной топологии получило в работах советских топологов, особенно в построенной выдающимся, безвременно погибшим советским математиком П. С. Урысоном (1898—1924) общей теории размерности, которая заложила основы классификации самых общих точечных множеств по основному признаку — числу измерений. Эта классификация оказалась чрезвычайно плодотворной и повлекла за собой совершенно новые точки зрения в изучении наиболее общих геометрических форм. Идеи Урысона, развитые в его теории размерности, послужили той почвой, на которой возникли замечательные работы Л. А. Люстерника (совместно с Л. Г. Шнирельманом) по вариационному исчислению.

В этих работах наряду с другими результатами было дано исчерпывающее положительное решение знаменитой проблемы Пуанкаре о существовании трех замкнутых годезических линий без кратных точек на всякой поверхности, гомеоморфной сфере.

С другой стороны, на почве теории размерности произошло перенесение П. С. Александровым алгебраических методов комбинаторной топологии в область теории множеств, что в свою очередь повело к новым

направлениям топологических исследований, в которых математики СССР, вплоть до самых молодых, прочно удерживают первое место.

Что касается собственно комбинаторной топологии, то после работ Пуанкаре и Брауэра, примерно около 1915 г., начинается цикл исследований американских топологов — Веблена, Биркгофа, Александера, Лефшеца. Ими были достигнуты очень значительные результаты. Так, Александер доказал топологическую инвариантность чисел Бетти, а также свою основную теорему двойственности, послужившую отправной точкой дальнейших исследований Л. С. Понтрягина; Лефшец дал известную формулу об алгебраическом числе неподвижных точек при любых непрерывных отображениях многообразий и тем заложил основы общей алгебраической теории непрерывных отображений, развитой далее Хопфом; Биркгофу наука обязана существенным продвижением теории динамических систем в ее чисто топологическом и в метрическом аспекте и т. д. Дальнейшее очень глубокое развитие топология многообразий и их непрерывных отображений получила в работах Хопфа, который наряду со многими другими результатами доказал существование бесконечного числа непрерывных отображений трехмерной сферы на двумерную, существенно различных между собой в том смысле, что никакие два из этих отображений не могут быть непрерывным видоизменением переведены друг в друга. Хопф, таким образом, становится основателем нового направления — так называемой гомотопической топологии. В настоящее время в гомотопической топологии, как и вообще во всей комбинаторной топологии, произошел новый большой сдвиг, вызванный работами новой французской топологической школы (Лерэ, Серр и др.).

Фундаментальные исследования Урысона были, как уже упоминалось, началом деятельности советских математиков в области топологии. Эти исследования относились к теоретико-множественной топологии, но уже с конца двадцатых годов советские топологи включают в круг своих интересов и комбинаторную топологию. Это включение произошло очень самобытным образом — посредством приложения комбинаторных методов к изучению замкнутых множеств, т. е. объектов очень общей природы. На этой почве произошло одно из значительнейших геометрических открытий текущего столетия — формулировка и доказательство Л. С. Понтрягиным его общего закона двойственности, устанавливающего глубокие и в известном направлении исчерпывающие связи между топологическим строением данного замкнутого множества, лежащего в -мерном эвклидовом пространстве, и дополнительной к нему части пространства. В связи со своим законом двойственности Л. С. Понтрягин построил общую

теорию характеров коммутативных групп, что привело его и к дальнейшим исследованиям в области общих топологических и классических непрерывных групп Ли — области, которая совершенно преобразована работами Л. С. Понтрягина. В дальнейшем Л. С. Понтрягин и его ученики произвели ряд выдающихся исследований по топологии многообразий и их непрерывных отображений (В. Г. Болтянский, М. М. Постников и др.). В этих исследованиях нашел свое применение новый метод — так называемых -гомологий, введенный в комбинаторную топологию А. Н. Колмогоровым и, независимо от него, Александером. Этот метод, занимающий сейчас первое место во всей гомотопической топологии, позволил в совершенно различных направлениях продолжить теорию двойственности Л. С. Понтрягина, что повело к теоремам двойственности А. Н. Колмогорова (и Александера), П. С. Александрова и К. А. Ситникова, принадлежащим к значительным результатам современной топологии. Этот же метод нашел важные приложения и в новейших работах Л. А. Люстерника по вариационному исчислению.

1
Оглавление
email@scask.ru