Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 8. ФУНДАМЕНТАЛЬНЫЕ ГРУППЫВо всех рассмотренных в предыдущих параграфах конкретных случаях группы обычно появлялись как группы преобразований тех или иных множеств. Исключение составляли лишь группы чисел относительно сложения и умножения. Теперь мы хотим разобрать важный пример, когда с самого начала группа возникает не как группа преобразований, а именно как некоторая алгебраическая система с одним действием. Фундаментальная группа. Рассмотрим некоторую поверхность
Рис. 21.
Рис. 22.
Рис. 23. На плоскости или сфере любые два пути, соединяющие точку А с точкой В, эквивалентны (рис. 21). Однако на: поверхности тора, например, замкнутые пути Если вместо тора рассмотреть бесконечно простирающийся в обе стороны круговой цилиндр и на нем взять путь X (рис. 23), то легко сообразить, что любой замкнутый путь с начальной точкой А, проведенный на цилиндре, будет эквивалентен пути вида
Возвращаясь к рассмотрению произвольной поверхности, предположим, что нам заданы на ней два пути — путь Согласно определению, перемножать можно не любые два пути, а лишь такие, у которых конечная точка первого пути совпадает с начальной точкой второго. Этот недостаток исчезает, если рассматривать лишь замкнутые пути, выходящие из одной и той же начальной точки А. Любые два такие пути можно перемножить, в результате чего снова получится замкнутый путь с начальной точкой А. Кроме того, для каждого замкнутого пути с начальной точкой А обратный путь обладает теми же свойствами. Условимся теперь эквивалентные пути считать различными представителями одного и того же «пути», лишь проведенного различными способами на поверхности., а неэквивалентные пути будем считать представителями существенно различных «путей». Приведенные выше замечания показывают, что в таком случае совокупность всех замкнутых путей (кавычки мы опускаем), выходящих из какой-либо точки А поверхности, будет являться группой относительно операции умножения путей. Единичным (нейтральным) элементом этой группы будет нулевой путь, а обратным элементом для данного пути будет служить этот же путь, только проходимый в обратном направлении. Группа путей, вообще говоря, зависит не только от вида поверхности, но и от выбора начальной точки А. Однако если поверхность не распадается на отдельные куски, т. е. если любые ее две точки могут быть соединены непрерывным путем, лежащим на поверхности, то группы путей, отвечающих различным точкам, будут изоморфными, и в этом случае можно говорить просто о группе путей поверхности Если поверхность Важность группы путей объясняется следующим ее свойством. Допустим, что, кроме поверхности Свойства фигур, остающиеся неизменными при взаимно однозначных и взаимно непрерывных преобразованиях, изучаются в особой математической дисциплине топологии, основные идеи которой были освещены в главе XVIII. Инварианты непрерывных преобразований называются топологическими инвариантами. Группа путей является одним из замечательнейших примеров топологических инвариантов. Ясно, что группа путей может быть определена не только для поверхности, но и для любых множеств точек, лишь бы в этих множествах можно было говорить о путях и их деформациях.
|
1 |
Оглавление
|