Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 3. МНОГООБРАЗИЯРассмотрим следующий простой прибор, иногда называемый двойным плоским маятником (рис. 14). Он состоит из двух стержней ОА и Каждое из возможных положений нашей системы вполне определяется, если задать угол у и угол Таким образом, мы можем сказать, что многообразие всех возможных состояний нашей механической системы есть многообразие двух измерений, а именно — тор. Заменяя каждый и» углов
Рис. 14.
Рис. 15. Другими словами, совершенно так же, как в аналитической геометрии, мы отождествляем точку плоскости с парой чисел — ее координат, так и в нашем случае мы можем отождествить точку тора (а значит и любое положение нашего маятника) с парой ее географических координат, т. е. с парой точек, из которых одна лежит на одной, а другая на другой окружности. Это положение вещей характеризуют, говоря, что многообразие всех возможных состояний нашего двойного плоского маятника, т. е. тор, есть топологическое произведение двух окружностей. Видоизменим теперь наш прибор следующим образом. Пусть он по-прежнему состоит из двух стержней ОА и два определяют направление стержня
Рис. 16. Мы можем подвергнуть наш шарнирный прибор еще дальнейшему усложнению, не только скрепив шаровым шарниром стержни ОА и Мы видим, таким образом, что уже простейшие механические рассмотрения (кинематические) приводят к топологическим многообразиям и притом трех и более измерений. При реальном, более подробном рассмотрении механических проблем еще большее значение имеют многообразия (вообще говоря, также многомерные), являющиеся так называемыми фазовыми пространствами динамических систем, где принимаются в расчет не только конфигурации, которые может иметь данная механическая система, но и скорости, с которыми движутся различные составляющие ее точки. Ограничимся одним из простейших примеров. Пусть мы имеем точку, способную двигаться по окружности с произвольной скоростью. Каждое состояние этой системы определяется двумя данными: положением точки на окружности и скоростью ее в данный момент. Многообразием состояний (фазовым пространством) данной механической системы является, очевидно, бесконечный цилиндр (произведение окружности на прямую). Число измерений фазового пространства растет вместе с ростом числа степеней свободы данной системы. Многие динамические характеристики той или иной механической системы находят свое выражение в топологических свойствах ее фазового пространства. Так, например, каждому периодическому движению данной системы соответствует замкнутая линия в ее фазовом пространстве. Изучение фазовых пространств динамических систем, поставленное на очередь различными проблемами механики, физики и астрономии (небесная механика, космогония), привлекло внимание математиков к топологии многомерных многообразий. Именно в связи с этими проблемами великий французский математик Пуанкаре предпринял в девяностых годах прошлого века систематическое построение топологии многообразий, применив при этом так называемый комбинаторный метод, являющийся с тех пор одним из основных методов топологии.
|
1 |
Оглавление
|