Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Глава XX. ГРУППЫ И ДРУГИЕ АЛГЕБРАИЧЕСКИЕ СИСТЕМЫ§ 1. ВВЕДЕНИЕВ главе IV (том 1), посвященной алгебре многочленов, уже шла речь об основных путях развития алгебры, ее месте среди других математических дисциплин, об изменениях во взглядах на самый предмет алгебры. Цель настоящей главы заключается в том, чтобы дать читателю представление о тех новых алгебраических теориях, которые, возникнув еще в прошлом веке, достигли полного развития в текущем столетии и оказали большое влияние на современные математические исследования. Современная алгебра, так же как классическая, есть учение о действиях, о правилах вычислений. Но она не ограничивается изучением свойств действий над числами, а стремится изучать свойства действий над элементами все более общей природы. Эта тенденция диктуется потребностями практики. Так, в механике складываются силы, скорости, повороты. В линейной алгебре (см. главу XVI), идеи и методы которой находят широкое применение в практических расчетах, областью действий являются матрицы, линейные преобразования, векторы Особо выдающуюся роль в современной алгебре играет теория групп, которой и будет посвящена большая часть этой главы. Из других алгебраических теорий мы остановимся на теории гиперкомплексных систем, являющейся необходимым и важным этапом в историческом процессе развития понятия числа. Этими двумя теориями, конечно, далеко не исчерпывается содержание современной алгебры, но ее идеи и методы освещаются ими достаточно ясно. Теория групп возникла из необходимости найти аппарат для изучения таких важных закономерностей реального мира, как закономерность симметрии. Познание свойств симметрии каких-либо геометрических тел или других математических и физических объектов иногда дает ключ к выяснению строения этих тел и объектов. Однако, несмотря на всю наглядность понятия симметрии, точная и общая формулировка того, что такое симметрия, и в особенности количественный учет свойств симметрии требуют использования аппарата теории групп. Теория групп возникла сравнительно давно: в конце XVIII и начале XIX в. Первоначально она развивалась лишь как вспомогательный аппарат для задачи о решении уравнений высших степеней в радикалах. Это было вызвано тем, что именно в указанной задаче впервые было замечено, что свойства равноправности, симметрии корней уравнения являются основными для решения всей задачи. В течение XIX и XX вв. важная роль закономерностей симметрии выявилась во многих других разделах науки: геометрии, кристаллографии, физике, химии. Благодаря этому методы и результаты теории групп получили широкое распространение. Поскольку каждая область приложений ставила перед теорией групп свои особенные задачи, рост числа этих областей оказывал и обратное воздействие, вызывая развитие новых отделов теории групп, приведшее к тому, что современная теория групп, являясь единой по своим основным понятиям, фактически распадается на ряд более или менее самостоятельных дисциплин: общая теория групп, теория конечных групп, теория непрерывных групп, дискретные группы преобразований, теория представлений и характеров групп. Постепенно развиваясь, методы и понятия теории групп оказались важными не только для изучения закономерностей симметрии, но и для решения многих других вопросов. В настоящее время понятие группы стало одним из важнейших обобщающих понятий современной математики, а теория групп заняла видное место среди математических дисциплин. Выдающийся вклад в развитие теории групп и ее приложений внесли Е. С. Федоров, О. Ю. Шмидт, Л. С. Понтрягин. Исследования советских математиков в области теории групп занимают ведущее место и в современном развитии этой теории.
|
1 |
Оглавление
|