Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Общее определение симметрии.В математике и ее приложениях очень редко возникает потребность рассмотрения всех преобразований данного множества. Дело в том, что сами множества редко приходится мыслить только как простое объединение своих элементов, ничем не связанных друг с другом. Это и естественно, так как множества, рассматриваемые в математике, являются отвлеченными образами реальных совокупностей, элементы которых всегда находятся в бесконечном числе взаимосвязей друг с другом и в связях с тем, что находится за пределами рассматриваемого множества. При этом в математике приходится отвлекаться от большей части этих связей, но наиболее существенные сохранять и учитывать. Это заставляет в первую очередь рассматривать такие преобразования множеств, которые не нарушают тех или иных учитываемых связей между элементами. Такие преобразования часто называют допустимыми преобразованиями или автоморфизмами по отношению к учитываемым связям элементов множества. Например, для точек пространства важным является понятие расстояния между двумя точками. Наличие этого понятия учитывает связь между точками, заключающуюся в том, что любые две точки находятся на определенном расстоянии одна от другой. Преобразованиями, не нарушающими этих связей, являются такие преобразования, при которых расстояния между точками не изменяются. Эти преобразования называются «движениями» пространства. Пользуясь понятием автоморфизма, не трудно дать общее определение симметрии. Пусть дано некоторое множество М, в котором учитываются определенные связи между элементами, и пусть Р есть некоторая часть М. Говорят, что совокупность Р симметрична или инвариантна относительно допустимого преобразования А множества М, если преобразование А переводит каждый элемент множества Р снова в элемент множества Р. Поэтому симметрия множества Р характеризуется совокупностью допустимых преобразований объемлющего множества М, преобразующих Р в себя. Понятие симметрии тел в пространстве вполне подходит под данное определение. Роль множества М играет все пространство, роль допустимых преобразований — «движения», роль Р — данное тело. Симметрия тела Р характеризуется, таким образом, совокупностью движений, при которых тело Р совмещается с собой. Рассмотренные ранее отражения, параллельные переносы и повороты пространства около заданной прямой являются частными случаями движений, так как расстояния между точками при этих преобразованиях, очевидно, не меняются. Более подробное исследование показывает, что каждое движение плоскости есть либо перенос, либо поворот около центра, либо отражение относительно прямой, либо комбинация отражения относительно прямой с переносом вдоль этой прямой. Аналогично каждое движение пространства есть либо параллельный перенос, либо поворот около оси, либо винтовое движение, т. е. поворот вокруг оси, сопровождаемый переносом вдоль этой оси, либо же отражение относительно плоскости, сопровождаемое, может быть, еще переносом вдоль плоскости отражения или поворотом вокруг перпендикулярной к этой плоскости оси. Параллельные переносы, повороты и винтовые движения пространства называются его собственными движениями, или движениями 1-го рода. Остальные «движения» (включающие в себя отражение) носят название несобственных движений, или движений 2-го рода. На плоскости движениями 1-го рода будут параллельные переносы и повороты, а отражения относительно прямой и отражения, сопровождаемые поворотом или переносом, будут движениями 2-го рода. Легко сообразить, что преобразования, являющиеся движениями 1-го рода, можно получить как результат непрерывного движения пространства самого в себе или плоскости самой по себе. Движения 2-го рода таким образом получить невозможно, так как этому препятствуют зеркальные отражения, входящие в их состав. Часто говорят, что плоскость симметрична во всех своих частях или что все точки плоскости равноправны. На точном языке преобразований это утверждение означает, что любую точку плоскости можно совместить с любой другой ее точкой посредством подходящего «движения».
Рис. 7. Рассмотренные ранее случаи симметрии тел или фигур также охватываются общим определением симметрии. Так, например, тело, симметричное относительно плоскости а, совмещается само с собой при отражении относительно плоскости а; тело, симметричное относительно центра О, совмещается само с собой при отражении относительно О. Поэтому степень симметричности тела или пространственной фигуры вполне характеризуется совокупностью тех движений 1-го и 2-го рода пространства, которые совмещают тело или фигуру самое с собой. Чем богаче и разнообразнее указанная совокупность движений, тем большей степенью симметричности обладает тело или фигура. В частности, если эта совокупность не содержит никаких движений, кроме тождественного преобразования, то тело можно назвать несимметричным. Степень, симметричности квадрата на плоскости характеризуется совокупностью движений плоскости, совмещающих квадрат сам с собой. Но если квадрат совмещается сам с собой, то точка пересечения его диагоналей также должна совмещаться сама с собой. Поэтому искомые движения оставляют центр квадрата неподвижным и потому являются либо поворотами около центра, либо отражениями относительно прямых, проходящих через центр. Из рис. 7 легко усматриваем, что квадрат Совокупность симметрий прямоугольника сводится к поворотам около центра на 180° и отражениям относительно прямых, соединяющих середины противоположных сторон, а совокупность симметрий параллелограмма (рис. 8) состоит лишь из поворотов вокруг центра на углы, кратные 180°, т. е. из отражения относительно центра и тождественного преобразования. Выше мы приводили алгебраический пример симметрии; именно, было отмечено, что имеет смысл понятие симметрии многочлена от нескольких переменных. Рассмотрим, как можно охарактеризовать симметрию многочлена. Будем говорить, что в многочлене
то
Рис. 8. Симметрия данного многочлена характеризуется совокупностью тех подстановок неизвестных, которые, будучи выполнены над многочленом, его не изменяют. Например, симметрия многочлена
|
1 |
Оглавление
|