Главная > Теория автоматического управления, Ч.II (Воронов А.А.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 9.4. Спектральные плотности случайных процессов

При исследовании автоматических систем управления удобно пользоваться еще одной характеристикой стационарного случайного процесса, называемой спектральной плотностью. Во многих случаях, особенно при изучении преобразования стационарных случайных процессов линейными системами управления, спектральная плотность оказывается более удобной характеристикой, чем корреляционная функция. Спектральная плотность случайного процесса определяется как преобразование Фурье корреляционной функцией , т. е.

Если воспользоваться формулой Эйлера то (9.52) можно представить как

Так как нечетная функция то в последнем выражении второй интеграл равен нулю. Учитывая, что четная функция получаем

Так как то из (9.53) следует, что

Таким образом, спектральная плотность является действительной и четной функцией частоты о). Поэтому на графике спектральная плотность всегда симметрична относительно оси ординат.

Если спектральная плотность известна, то по формуле обратного преобразования Фурье можно найти соответствующую ей корреляционную функцию:

Используя (9.55) и (9.38), можно установить важную зависимость между дисперсией и спектральной плотностью случайного процесса:

Термин «спектральная плотность» обязан своим происхождением теории электрических колебаний. Физический смысл спектральной плотности можно пояснить следующим образом.

Пусть — напряжение, приложенное к омическому сопротивлению 1 Ом, тогда средняя мощность рассеиваемая на этом сопротивлении за время равна

Если увеличивать интервал наблюдения до бесконечных пределов и воспользоваться (9.30), (9.38) и (9.55) при то можно формулу для средней мощности записать так:

Равенство (9.57) показывает, что средняя мощность сигнала может быть представлена в виде бесконечной суммы бесконечно малых слагаемых , которая распространяется на все частоты от 0 до

Каждое элементарное слагаемое этой суммы играет роль мощности, соответствующей бесконечно малому участку спектра, заключенному в пределах от до Каждая элементарная мощность — пропорциональна значению функции для данной частоты Следовательно, физический смысл спектральной плотности состоит в том, что она характеризует распределение мощности сигнала по частотному спектру.

Спектральная плотность может быть найдена экспериментально через среднюю величину квадрата амплитуды гармоник реализации случайного процесса. Приборы, применяемые для этой цели и состоящие анализатора спектра и вычислителя среднего значения квадрата амплитуды гармоник, называются спектрометрами. Экспериментально находить спектральную плотность сложнее, чем корреляционную функцию, поэтому на практике чаще всего спектральную плотность вычисляют но известной корреляционной функции с помощью формулы (9.52) или (9.53).

Взаимная спектральная плотность двух стационарных случайных процессов определяется как преобразование Фурье от взаимной корреляционной функции т. е.

По взаимной спектральной плотности можно, применяя к (9.58) обратное преобразование Фурье, найти выражение для взаимной корреляционной функции:

Взаимная спектральная плотность является мерой статистической связи между двумя стационарными случайными процессами: Если процессы некоррелированы и имеют равные нулю средние значения, то взаимная спектральная плотность равна нулю, т. е.

В отличие от спектральной плотности взаимная спектральная плотность не является четной функцией о и представляет собой не вещественную, а комплексную функцию.

рассмотрим некоторые свойства спектральных плотностей

1 Спектральная плотность чистого случайного процесса, или белого шума, постоянна во всем диапазоне частот (см. рис. 9.5, г):

Действительно, подставляя в (9.52) выражение (9.47) для корреляционной функции белого шума, получим

Постоянство спектральной плотности белого шума во всем бесконечном диапазоне частот, полученное в последнем выражении, означает, что энергия белого шума распределена по всему спектру равномерно, а суммарная энергия процесса равна бесконечности. Это указывает на физическую нереализуемость случайного процесса типа белого шума. Белый шум является математической идеализацией реального процесса. В действительности частотный спектр западает на очень высоких частотах (как показано пунктиром на рис. 9.5, г). Если, однако, эти частоты настолько велики, что при рассмотрении какого-либо конкретного устройства они не играют роли (ибо лежат вне полосы частот, пропускаемых этим устройством), то идеализация сигнала в виде белого шума упрощает рассмотрение и поэтому вполне целесообразна.

Происхождение термина «белый шум» объъясняется аналогией такого процесса с белым светом, имеющим одинаковые интенсивности всех компонент, и тем, что случайные процессы типа белого шума впервые были выделены при исследовании тепловых флуктуациоиных шумов в радиотехнических устройствах.

2. Спектральная плотность постоянного сигнала представляет собой -функцию, расположенную в начале координат (см. рис. 9.5, а), т. е.

Чтобы доказать это, допустим, что спектральная плотность имеет вид (9.62), и иандем по (9.55) соответствующую ей корреляционную функцию. Так как

то при получаем

Это (в соответствии со свойством 5 корреляционных функций) означает, что сигнал, соответствующий спектральной плотности, определяемой (9.62), является постоянным сигналом, равным

Тот факт, что спектральная плотность представляет собой -функцию при означает, что вся мощность постоянного сигнала сосредоточена на нулевой частоте, что и следовало ожидать.

3. Спектральная плотность периодического сигнала представляет собой две -функции, расположенные симметрично относительно начала кординат при (см. рис. 9.5, д), т. е.

Чтобы доказать это, допустим, что спектральная плотность имеет вид (9.63), и найдем по (9.55) соответствующую ей корреляционную функцию:

Это (в соответствии со свойством 6 корреляционных функций) означает, что сигнал, соответствующий спектральной плотности определяемой (9.63), является периодическим сиг налом, равным

Тот факт, что спектральная плотность представляет собой две -функции, расположенные при означает, что вся мощность периодического сигнала сосредоточена на двух частотах: Если рассматривать спектральную плотность только в области положительных частот, то получим,

Рис. 9.9

что вся мощность периодического сигнала будет сосредоточена на одной частоте .

4. Спектральная плотность временной функции, разлагаемой в ряд Фурье имеет на основании изложенного выше вид

Этой спектральной плотности соответствует линейчатый спектр (рис. 9.9) с -функциями, расположенными на положительных и отрицательных частотах гармоник. На рис. 9.9 -функции условно изображены так, что их высоты показаны пропорциональными коэффициентам при единичной -функции, т. е. величинам и

Заметим, что спектральная плотность как это следует из (9.64), не содержит, так же как и корреляционная функция, определяемая (9.44), никаких сведений о фазовых сдвигах отдельных гармонических составляющих.

5. Спектральная плотность случайного процесса, не содержащего периодической составляющей, представляет собой график без ярко выраженных пиков (см. рис. 9.5, б, в).

В этом случае спектральная плотность часто аппроксимируется следующим аналитическим выражением:

где — дисперсия случайного процесса; — параметр затухания; — постоянный коэффициент.

Спектральной функции, определяемой по (9.65), соответствует корреляционная функция

которая полностью совпадает с корреляционной функцией, определяемой по (9.45).

Из рис. 9.5, б, в видно, что чем шире график спектральной плотности тем уже график соответствующей корреляционной функции и наоборот. Это соответствует физической сущности процесса: чем шире график спектральной плотности, т. е. чем более высокие частоты представлены в спектральной плотности, тем выше степень изменчивости случайного процесса и тем же графики корреляционной функции. Другими словами, связь между видом спектральной плотности и видом функции времени получается обратной по сравнению со связью между корреляционной функцией и видом функции времени. Это особенно ярко проявляется при рассмотрении постоянного сигнала и белого шума. В первом случае корреляционная функция имеет вид горизонтальной прямой, а спектральная плотность имеет вид -функции (см. рис. 9.5, а). Во втором случае (см. рис. 9.5, г) имеет место обратная картина.

6. Спектральная плотность случайного процесса, на кото рой наложены периодические составляющие, содержит непрерывную часть и отдельные -функции, соответствующие частотам периодических составляющих.

Отдельные пики на графике спектральной плотности указывают на то, что случайный процесс смешан со скрытыми периодическими составляющими, которые могут и не обнаруживаться при первом взгляде на отдельные записи процесса. Если, например, на случайный процесс наложен один периодический сигнал с частотой то график; сцектральной плотности имеет вид, показанный на рис. 9.10,

Иногда в рассмотрение вводят нормированную

Рис. 9.10

спектральную плотность являющуюся изображением Фурье нормированной корреляционной функции (9.48):

Нормированная спектральная плотность имеет размерность времени.

1
Оглавление
email@scask.ru