Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 43. Теорема Жуковского о подъемной силе крыла. Зависимость подъемной силы от угла атаки. Коэффициент подъемной силыСоздание общей теории воздействия плоского потока идеальной жидкости на помещенный в него крыловой профиль является заслугой великого русского ученого Н. Е. Жуковского, опубликовавшего свою известную теорему о подъемной силе крыла в 1906 г. в классическом мемуаре "О присоединенных вихрях". Н. Е. Жуковский первый установил вихревую природу сил, действующих со стороны потока на крыло, и указал на наличие простой пропорциональности между этой силой и интенсивностью вихря, "присоединенного" к обтекаемому телу. В предыдущем параграфе уже указывалось, что решение задачи об обтекании любого профиля содержит некоторый произвол: один и тот же профиль, при заданной по величине и направлению скорости набегающего на него потока, может обтекаться бесчисленным множеством образов. Все зависит от величины циркуляции скорости, вычисленной по замкнутому контуру, охватывающему обтекаемый профиль. Величина этой циркуляции, так же как и природа возникновения в идеальной жидкости вихрей, сумма интенсивностей которых должна быть равна этой циркуляции, представляла долгое время неразрешимую задачу. Физическая причина возникновения циркуляции связана с наличием трения (вязкости) в жидкости. Как уже неоднократно упоминалось ранее, в реальной жидкости, обладающей внутренним трением, частицы, проходящие в непосредственной близости к поверхности профиля, образуют тонкий пограничный слой. В этой области резко проявляется неидеальность жидкости, движение жидкости будет вихревым, причем интенсивность вихрей может достигать больших значений, так как скорость частиц в пограничном слое резко меняется от нуля на поверхности обтекаемого тела до величины порядка скорости на бесконечности на внешней границе слоя. Так, например, на крыле самолета максимальная толщина пограничного слоя не превосходит нескольких сантиметров, в то время как разность скоростей на поверхности крыла и на внешней границе пограничного слоя достигает величины 100-200 м в секунду. При таких значительных неоднородностях скоростного поля суммарная интенсивность вихрей по всему крылу, а следовательно, и циркуляция скорости по замкнутому контуру, охватывающему крыло, может достигать больших значений. Теория идеальной жидкости, не учитывающая наличия трения, естественно, не могла объяснить возникновения вихрей в набегающем на трло безвихревом потоке. Для того чтобы, оставаясь в рамках теории идеального безвихревого потока, определить величину воздействия потока на помещенное в него тело, заменим, следуя Жуковскому, контур тела замкнутой линией тока и предположим, что внутри нее происходит движение жидкости с Эти две глубокие идеи великих русских аэродинамиков Н. Е. Жуковского и С. А. Чаплыгина: присоединенный вихрь и постулат конечности скорости на задней кромке крыла — легли в основу всей современной теории крыла.
Рис. 89. Начнем с доказательства теоремы Жуковского о подъемной силе крыла в плоскопараллельном потоке. Предлагаемое ниже векторное доказательство теоремы Жуковского только по форме отличается от классического доказательства этой теоремы, данной ее автором. Применим теорему количеств движения в форме Эйлера [§ 23, формула (38)] к объему жидкости, заключенному между поверхностью обтекаемого контура С (рис. 89) и проведенной в удалении от контура С окружностью круга в силу плоского характера течения,
В этом равенстве опущен, как равный нулю, перенос количества движения сквозь твердую поверхность профиля С. Первый интеграл представляет главный вектор сил давления со стороны обтекаемого тела на жидкость. Та же величина с обратным знаком определит искомый главный вектор сил давления жидкости на тело
где
По теореме Бернулли
причем, как мы уже знаем, постоянная, стоящая справа, имеет в случае безвихревого движения одинаковое значение во всей области течения, а следовательно, и на круге
Разложим вектор скорости V на два слагаемых, положив
где Подставляя указанное разложение скорости в равенство (82), получим:
По предыдущему [гл. I, формула (68)], первый интеграл равен нулю; пропадает также четвертый интеграл, так как при отсутствии источников — стоков и несжимаемости жидкости полный расход жидкости сквозь контур
Рассмотрим совокупность второго и пятого интегралов:
которую по известной формуле разложения тройного векторного произведения можно представить как
или, заменяя V на
тождественно равный нулю, получим
Таким образом, будем иметь следующее выражение для главного вектора сил давления потока на профиль С:
Вектор
направлен по перпендикуляру к плоскости движения, а его проекция
т. е. циркуляции скорости по контуру
где вектор
взятый по любому контуру Из равенства (84) находим величину главного вектора сил давления потока на тело:
Главный вектор, как показывает формула (84), лежит в плоскости течения и направлен перпендикулярно к скорости на бесконечности в сторону, определяемую векторным произведением (84). Обычно бывает очень трудно заранее определить, в какую сторону направлен вектор Г: внутрь или наружу относительно плоскости чертежа. Если известно направление обхода контура, при котором Таким образом, приходим к классической формулировке теоремы Жуковского, данной самим автором: сила давленая невихревого потока, текущего со скоростью
направление этой силы мы получим, если вектор Первый вывод, который следует сделать из теоремы Жуковского, заключается в отсутствии составляющей силы, направленной вдоль движения жидкости, или, что все равно, направления движения тела по отношению к жидкости, т. е. отсутствии силы сопротивления. Этот важный факт составляет содержание парадокса Даламбера, о котором была речь в историческом очерке, помещенном во вводной части курса. Теорема Жуковского подтверждает парадокс Даламбера для любого плоского безвихревого движения идеальной жидкости как при наличии "присоединенных вихрей", так и при отсутствии их. Единственной силой, действующей на обтекаемый профиль, оказывается поперечная движению тела сила, которая может быть названа подъемной или поддерживающей силой, так как именно эта сила обеспечивает подъем аэроплана в воздух, поддерживает его крыло при горизонтальном полете. Воспользовавшись теоремой Жуковского и постулатом Жуковского-Чаплыгина, можно по формулам (86), (80) или (81) получить выражение величины подъемной силы в виде
впервые указанном Чаплыгиным. Входящее в эту формулу произведение
В общем случае подъемная сила, согласно (87), оказывается пропорциональной плотности жидкости, квадрату скорости набегающего потока и синусу угла атаки. Введем коэффициент подъемной силы как отношение подъемной силы литературе принято обозначать через При этом обозначении будем иметь
или в частном случае пластинки
Как показывают многочисленные опыты, при сравнительно малых углах атаки, при которых только и выполняется условие плавного схода струй с задней кромки, формула (88), переписанная в виде
довольно хорошо отражает действительную закономерность: коэффициент подъемной силы прямо пропорционален углу атаки, отсчитанному от бесциркуляционного направления, но коэффициент пропорциональности
Рис. 90. Применять формулы Жуковского и Чаплыгина (86) и (87) к пластинке, строго говоря, нельзя, так как на переднем остром крае пластинки скорость обращается в бесконечность, что нарушает непрерывность обтекания. Становится непонятным, как вообще на пластинке может возникнуть сила, перпендикулярная направлению ее движения. Действительно, при отсутствии трения нормальные к поверхности пластинки силы давления должны дать главный вектор, направленный также по перпендикуляру к плоскости пластинки, а не к скорости на бесконечности, как этого требует теорема Жуковского. При этом, наряду с подъемной силой, имелась бы и сила сопротивления. Этот парадокс был разъяснен Жуковским во второй из ранее цитированных статей. При действительном обтекании пластинки передний ее край представляет собою на самом деле некоторую поверхность очень малого радиуса кривизны, на которой возникает значительное разрежение, приводящее к направленной против течения "подсасывающей" силе, уничтожающей сопротивление.
|
1 |
Оглавление
|