Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА IX. ТУРБУЛЕНТНОЕ ДВИЖЕНИЕ§ 91. Переход ламинарного движения в турбулентное. Критическое рейнольдсово числоПодкрашивая жидкость или впуская в движущийся газ облачка, отличного от него по цвету дыма, можно непосредственно наблюдать за движением отдельных малых объемов жидкости или газа. При этом, как показывают опыты, в одних случаях наблюдаемые струйки сохраняют отчетливую форму на большом протяжении и медленно рассеиваются в потоке, а в других, наоборот, сразу же размываются, окрашивая или задымляя окрестные объемы жидкости или газа. Первый вид движения, при котором частицы следуют по отчетливо видимым траекториям, представляющим плавные, лишь слегка изменяющиеся со временем, кривые, называется ламинарным, этот вид движения был рассмотрен в предыдущей главе. Более распространен второй вид движения с хаотически переплетенными и быстро изменяющимися во времени траекториями, с поперечными и, даже, попятными по отношению к общему движению жидкости перемещениями отдельных малых объемов. Такое нерегулярное, имеющее в малых своих частях случайный характер движение называется турбулентным. Характерные особенности турбулентного движения удобно наблюдать, например, в городских каналах при малых скоростях движущейся в них воды. Если посмотреть с моста на поверхность воды в канале, обычно засоренную листьями, щепками и другими мелкими плавающими телами или налетом нефти, то можно заметить, как отдельные объемы воды, участвуя в общем поступательном движении, совершают весьма замысловатые движения поперек общего направления потока, а вблизи берегов, где скорости особо малы, даже попятные движения. Ламинарные и турбулентные движения при некоторых условиях переходят одно в другое. Повышая, например, скорость ламинарно движущейся по цилиндрической трубе жидкости, заметим, как на подкрашенную и хорошо видимую вначале прямолинейную струйку начинают накладываться волны, распространение которых вдоль струйки говорит о появлении возмущений в ранее спокойном прямолинейном движении. Постепенно число таких волн и их амплитуды начинают возрастать, пока, наконец, струйка не разобьется на нерегулярные перемешивающиеся между собой змеевидные мелкие струйки; хаотический характер этого перемешивания позволяет судить о переходе ламинарного движения в турбулентное. Описанная только что картина перехода (наблюдения такого рода впервые систематически производились Рейнольдсом во второй половине XIX в.) с полной отчетливостью вскрывает природу происходящего в жидкости явления. С возрастанием скорости ламинарное движение теряет свою устойчивость; при этом любые случайные малые возмущения, которые вначале вызывали лишь малые колебания вокруг устойчивого ламинарного движения, начинают быстро развиваться и приводят к новой форме движения жидкости — к турбулентному ее движению. Законы движения потерявшей устойчивость жидкости, при котором самые ничтожные, возникшие от совершенно случайных причин возмущения развиваются и накладываются одно на другое, естественно, крайне сложны. В некоторых исследованиях по турбулентному движению даже ставился вопрос: можно ли вообще рассматривать турбулентное движение как непрерывное движение, удовлетворяющее гидродинамическим уравнениям, или это совокупность случайных движений отдельных малых объемов жидкости, аналогичных, например, движению молекул. В связи с этим неоднократно делались попытки чисто статистического изучения турбулентных движений, не основанного на использовании гидродинамических уравнений. Однако все эти попытки не привели пока еще к ощутительным для практики результатам. На самом деле, как показывают многочисленные исследования, турбулентное движение, как бы ни было оно сложно по своей внутренней структуре, подчиняется общим законам динамики непрерывной среды, в частности установленным в предыдущей главе уравнениям динамики вязкой сжимаемой или несжимаемой жидкости в нестационарной их форме. В то же время не имеет смысла точная постановка вопроса о разыскании решений этих уравнений при строго поставленных начальных и граничных условиях. Действительно, в обстановке неограниченного роста сколь угодно малых возмущений самые, ничтожные отклонения от поставленных граничных и начальных условий (неточности в изготовлении поверхности обтекаемого тела, предыдущая история потока и др.) могут привести к столь значительным изменениям решений уравнений, что за ними исчезнут все достоинства "строгой" постановки задачи. Пользоваться упрощенной геометризацией формы обтекаемых тел или каналов и не учитывать наличия начальных возмущений в потоке можно лишь в тех случаях, когда поток устойчив и существует уверенность, что сделанные малые ошибки в постановке задачи приведут к столь же малым ошибкам в ее пешении; это и делалось ранее при рассмотрении ламинарных движений. Для исследования турбулентных движений приходится применять особые, характерные для существа рассматриваемого явления приемы, связанные с заменой действительного движения некоторой упрощенной схемой осрсдненного в пространстве и времени движения, которое примерно так же относится к истинному, как ламинарное движение — к представляющему его внутреннюю структуру хаотическому молекулярному. Эта аналогия сыграла свою роль в истории создания законов осредненного турбулентного движения жидкости. Прежде чем перейти к выводу основных уравнений осредненного движения, рассмотрим несколько детальнее явление перехода ламинарного движения в турбулентное. Из предыдущего вытекает, что вопрос об определении условий перехода ламинарного движения в турбулентное сводится к решению задачи об устойчивости ламинарного движения и указанию границы потери этой устойчивости. Не имея возможности останавливаться на весьма сложной математической теории устойчивости ламинарных движений, удовольствуемся изложением некоторых важных для практики выводов этой теории. Еще в 1883 г. О. Рейнольде, на основании большого числа систематических наблюдений за движением воды в круглой цилиндрической трубе, заметил, что существует некоторое характерное для режима движения критическое число
впоследствии названное критическим числом Рейнольдса (
причем при границы критического числа; эта граница многократно отодвигалась все более и более тщательными опытами и была доведена чуть ли ни до числа 150 000. Конечно, такое "затянутое" ламинарное движение не терпит появления даже очень небольших возмущений и сразу же переходит в турбулентное. Для дальнейшего представляет интерес лишь нижняя граница Оставляя в стороне вопрос об опытных значениях критического рейнольдсова числа для цилиндрических труб с различной формой сечений (об этом подробно рассказывается в курсах гидравлики), заметим лишь, что на величину критического числа сильно влияет всякое отклонение трубы от цилиндричности, т. е. диффузорность или конфузорность трубы. Так, в сходящихся трубах (конфузорах) Отметим, что шероховатость стенок не влияет на величину критического числа Рейнольдса, что и естественно, так как "нижнее" число Рейнольдса связано с внутренней устойчивостью потока, а не наличием или отсутствием возмущений. Можно провести некоторую аналогию между явлением перехода ламинарного движения в турбулентное в трубе и переходом ламинарного пограничного слоя в турбулентный на крыле. Если грубо качественно сопоставлять скорость на внешней границе пограничного слоя со скоростью на оси трубы, а "толщину" пограничного слоя с радиусом трубы, то следует ввести в рассмотрение рейнольдсово число пограничного слоя
характеризующее поток в данном сечении слоя. Многочисленные опыты по определению критического числа При малой интенсивности турбулентности внешнего потока в опытах как с пластинками, так и с крыльями удавалось "затянуть" переход на большие значения Относительный размер ламинарного участка пограничного слоя на крыле, особенно при малой турбулентности набегающего потока, зависит также от степени шероховатости крыла вблизи передней его кромки и от наличия производственных недостатков обработки поверхности в этой области крыла. Такое отличие движения жидкости в пограничном слое от движения в трубе может быть легко объяснено. Ламинарное движение жидкости в длинной трубе в области, достаточно удаленной от входа в трубу, не может зависеть от условий втекания жидкости в трубу, так как возмущения, зародившиеся вблизи входа или вошедшие вместе с внешней жидкостью, должны затухать. Иначе обстоит дело с пограничным слоем, через внешнюю границу которого вдоль всего слоя поступает внешняя жидкость. Кроме того, как уже ранее упоминалось, вблизи носика крыла пограничный слой еще очень тонок, и любые даже очень незначительные по размеру бугорки шероховатости проникнут сквозь пограничный слой, нарушая его движение. Вместо
составленные по более строго определяемым величинам: толщине вытеснения и толщине потери импульса. Соответствующие критические их значения могут быть найдены непосредственно по замерам скоростей в сечениях слоя или пересчетом. В настоящее время наиболее широко используется число Наблюдающееся различие в значениях диффузорную часть пограничного слоя. В области ускоренного течения во внешнем потоке можно ожидать более высоких значений
Результаты многочисленных теоретических исследований устойчивости движения в ламинарном пограничном слое, на которых мы не можем здесь остановиться, позволили установить показанную на рис. 178 приближенную кривую зависимости
Рис. 178. Исключая отсюда х, найдем связь между равенствам (1), будет пересекаться с кривой рис. 178. Определив в точке пересечения этих двух кривых
|
1 |
Оглавление
|