Главная > Механика жидкости и газа
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 66. Осесимметричное продольное обтекание тел вращения. Случай эллипсоида вращения

Для расчета внешнего осесимметричного обтекания тел вращения (рис. 147 а) возьмем в меридиональных плоскостях эллиптическую систему координат связанную с соотношениями [вспомнить формулы § 40 гл. V]:

где величина с представляет расстояние фокусов семейства координатных линий — софокусных эллипсов и гипербол — от начала координат. Положим:

тогда связь между координатами и будет иметь вид:

Определив производные:

найдем, согласно (46), коэффициенты Ляме:

После этого уже нетрудно составить и основное дифференциальное уравнение Лапласа для потенциала скоростей.

Рис. 147.

По (47) получим:

Будем искать частное решение этого уравнения в виде произведения двух функций от переменных в отдельности:

тогда в уравнении (54) переменные разделятся и из равенства

в силу независимости будет следовать, что каждая из частей равенства должна быть постоянной, которую можно выбирать совершенно произвольно. Полагая эту постоянную равной где целое положительное число, получим для определения два обыкновенных линейных уравнения второго порядка лежандрова типа:

Этим уравнениям удовлетворяют два класса независимых решений:

1) функции Лежандра 1-го рода, в частности полиномы Лежандра определяемые равенствами:

и реккурентным соотношением для вычисления последующих полиномов

2) функции Лежандра 2-го рода определяемые равенствами:

и, вообще,

При желании можно пользоваться реккурентным соотношением

совершенно аналогичным реккурентному соотношению для полиномов Лежандра.

Функция как полином степени, обращается в бесконечность при бесконечно возрастающем аргументе, функция же при этом стремится к нулю, но зато обращается в логарифмическую

бесконечность при случае внешнего обтекания тела координата может достигать бесконечных значений, а координата ограничена. Принимая во внимание, что потенциал скоростей возмущенного движения (т. е. полного обтекания за вычетом однородного потока со скоростью, равной скорости на бесконечности) должен стремиться к нулю при удалении от поверхности тела, можно вне отрезка оси представить полный потенциал скоростей в виде суммы потенциалов скоростей возмущенного движения и однородного потока, набегающего на тело со скоростью, на бесконечности равной и направленной вдоль

здесь неопределенные коэффициенты, значение которых зависит от формы обтекаемого тела.

Для определения коэффициентов найдем прежде всего выражение функции тока

По общим формулам (35) § 63 и (53) будем иметь:

или, после подстановки разложения (55):

Переписывая второе равенство в виде

и полагая коэффициент подставим под знак суммы выражение для из основного дифференциального уравнения функций Лежандра (54):

Тогда будем иметь:

Интегрируя по получим окончательное выражение для функции тока:

Уравнение "нулевой" поверхности тока будет:

Сравнивая его с заданным уравнением профиля тела вращения в эллиптических координатах, можно определить величины коэффициентов что и решает задачу. Конечно, именно этот пункт и является наиболее сложным с вычислительной стороны.

Имея выражение потенциала скоростей, найдем и саму скорость по формуле:

Проиллюстрируем метод простейшим примером. Рассмотрим обтекание эллипсоида вращения, меридиональное сечение которого имеет уравнением

Полагая в уравнении при получим:

Потенциал скоростей будет равен по (55):

Этому выражению можно придать несколько иной вид, если ввести явно полуоси эллипсоида расположенные, соответственно, по осям Будем иметь, согласно (53), уравнение эллипса в виде:

откуда следует:

или, введя эксцентриситет

В этих обозначениях получим:

Для проверки можно, пользуясь этим выражением, получить потенциал обтекания сферы радиуса а, если заметить, что по определению эллиптических координат:

где сферические координаты. Производя разложения:

и заменяя на убедимся, что

т. е. к известному уже по § 64 выражению (43).

Проекции скорости на оси эллиптических координат будут:

Полагая здесь убедимся, что на поверхности эллипсоида это и естественно, так как координатные линии перпендикулярны к поверхности эллипсоида и условие эквивалентно условию равенства нулю нормальной к поверхности составляющей скорости. Распределение скоростей по поверхности эллипсоида определится равенством:

Полученное только что решение относится к обтеканию эллипсоида вращения, удлиненного вдоль по течению. Подобным же образом можно было бы исследовать и менее интересный с практической стороны случай обтекания сплюснутого эллипсоида, фокусы меридионального сечения которого лежат не на оси а в меридиональных плоскостях. В только что цитированных курсах приводится также решение более общей задачи об обтекании эллипсоида, у которого все оси различны.

1
Оглавление
email@scask.ru