Главная > Механика жидкости и газа
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 90. Ламинарный пограничный слой на пластинке при любом законе связи между вязкостью и температурой и при числе ... Обтекание крылового профиля потоком больших скоростей

Откажемся теперь от ограничения и рассмотрим систему уравнений (113) в предположении что довольно близко к значению для воздуха. О влиянии отклонений а от единицы можно в известной степени суднть по результатам предыдущего параграфа при и различных .

Исключим при системы (113) величину у, для чего умножим первое равенство на V, второе — на и вычтем одно из другого. Получим:

или, вычисляя производные и проводя сокращения:

Возвращаясь к скорости перепишем последнее равенство в виде:

и произведем в нем замену:

тогда получим:

Отсюда вытекает равенство:

интегрирование которого приводит к важному соотношению:

Постоянные интегрирования легко определяются из условий:

так что будем иметь:

или, переходя к размерным температурам и скоростям:

Последнему равенству можно придать простой и наглядный смысл. Обозначим значком сверху ту температуру, которую газ получил бы, будучи каким-то адиабатическим и илэнтропическим процессом переведен из данной точки потока к покою.

Тогда для любой точки пограничного слоя получим:

и, следовательно, на внешней границе слоя и на поверхности пластинки будет:

Переписывая (127) в форме:

получим равенство:

служащее обобщением известного уже нам по § 85 соотношения подобия (74) на случай движения сжимаемого газа при больших скоростях. Согласно (128), можно утверждать, что в любом сечении слоя, при и произвольном показателе степени в законе зависимости вязкости от температуры, поле перепадов температур газа, адиабатически и изэнтропически пересчитанных на покоящийся газ, подобно полю скоростей.

Разыскание профиля скоростей по сечению пограничного слоя, а вместе с тем по профиля температур, представляет значительные трудности, так как приводит к необходимости для каждого значения численно интегрировать нелинейное уравнение второго порядка. Для составления этого уравнения возьмем первое уравнение системы (113), один раз его продифференцируем по и из таким образом полученной системы:

исключим величии) для этого умножим первое этих уравнений на второе на и вычтем одно из другого. Получим:

Имея в виду, что представляет по (127) известную функцию и что перепишем последнее уравнение в форме:

и введем новую неизвестную функцию

и новое независимое переменное и. Тогда будем иметь искомое нелинейное дифференциальное уравнение

в котором предполагается замененным, согласно (127). Из первого уравнения системы (113) при следует граничное условие

так как При и уравнение (130) имеет особую точку. Исследуем поведение интегральных кривых вблизи особой точки. Для этого положим в правой части будем иметь, согласно (127), уравнение

которое приводится к квадратуре следующим путем (а — постоянная интегрирования):

Полагая здесь:

найдем:

где принято обычное обозначение

Задаваясь различными а, подбираем такое его значение, чтобы интегральная кривая, выйдя из точки и вдоль кривой (131) и численно затем рассчитанная до , дала т. е. удовлетворила граничному условию (130). Определив таким образом как функцию от и, сможем по (129) найти и а следовательно, и трение.

Так же как и в предыдущем параграфе, получим:

откуда, согласно (129), будет следовать:

здесь в свою очередь зависит от температурного фактора и числа

На рис. 176 приводим рассчитанный полный коэффициент сопротивления пластинки в функции от числа при отсутствии теплоотдачи и при различных значениях числа Влияние числа на коэффициент сопротивления при малых невелико и возрастает с ростом Как показывают расчеты, влияние на распределение скоростей невелико даже при больших

Рис. 176.

Можно сделать общий вывод: при отсутствии теплоотдачи и не слишком больших значениях Мот влияние сжимаемости воздуха на характеристики пластинки сравнительно мало. Иное наблюдается при сильном охлаждении пластинки. Как было показано еще в предыдущем параграфе, при этих условиях изменение числа значительно сказывается на полях скоростей и температур.

Влияние сжимаемости на движение газа в пограничном слое становится существенным даже при числах меньших единицы, при обтекании телесного крылового профиля. В этом случае влияние сжимаемости проявляется главным образом за счет изменения распределения скоростей во внешнем потоке, о котором говорилось еще в гл. VI.

При отсутствии теплоотдачи с поверхности крылового профиля и числе расчет ламинарного пограничного слоя не представляет труда и проводится методом, служащим простым обобщением изложенного в § 88. Параметр определенный формулой

в которой производная и о вычислены в переменных. Дородницына с и

а теплосодержание адиабатически и изэнтропически заторможенного потока, может быть выражен через известную функцию приближенным соотношением (в обычном аргументе )

где те же самые константы, что и в § 88, а имеет значение

для воздуха близкое к числу 2,5. В зависимости от выбора чисел следует выбирать и отрывное значение

На рис. 177 приведен вспомогательный график, позволяющий по заданному распределению коэффициента давлений в несжимаемом обтеканни сразу определять величину при докритических значениях числа

Рис. 177.

График составлен на основании изложенного в гл. VI приближения теории Христиановича.

Как было еще показано в гл. VI, возрастание числа в дозвуковой области вывывает увеличение разрежений и вместе с тем углов наклона кривой за точкой минимума давления, т. е. увеличение по абсолютной величине производной Как можно заметить по структуре формулы (133), это приведет к ускорению возрастания следовательно, к перемещению точки отрыва в сторону точки минимума давления. Можно поэтому думать, что сжимаемость газа при дозвуковых скоростях предваряет отрыв, ухудшая обтекание крылового профиля. Расчеты подтверждают такое мнение. В дальнейшем будет указано экспериментальное подтверждение того же факта.

Удовольствуемся этими краткими сведениями о ламинарном пограничном слое в сжимаемом газе. Применение к сжимаемому газу приближенных методов теории ламинарного пограничного слоя (см. § 87) произодилось многими авторами. Для пластинки первое исследование в этом направлении было проведено Ф. И. Франклем. При отсутствии теплоотдачи и числе теми же приближенными приемами для крылового профиля пользовался А. А. Дородницын в ранее цитированной работе. При более общих предположениях (наличие теплоотдачи) тот же вопрос был исследован Л. Е. Калихманом.

1
Оглавление
email@scask.ru