2. Диссипативные эффекты в газовой динамике и уравнение Бюргерса
Уравнения газовой динамики представляют собой систему квазилинейных гиперболических уравнений. Такие системы обсуждались в предыдущей главе. При этом нестационарные уравнения механики невязкой сплошной среды были должным образом включены в более полные уравнения вязкой среды. Одно из замечательных уравнений механики сплошной среды — уравнение Бюргерса — дает прекрасную иллюстрацию такого включения. Это уравнение описывает движение слабо нелинейных волн в газах, когда необходимо учесть эффекты диссипации в первом приближении. В пределе исчезающе малой диссипации оно обеспечивает правильную интерпретацию решения в случае невязкой среды. Это уравнение имеет богатую историю, обсуждать которую, у нас здесь нет возможности. Оно было предложено Бюргерсом [9] как модельное уравнение, для описания одномерной турбулентности. Лайтхилл [10] показал, что при правильной интерпретации это уравнение пригодно для описания распространения плоских волн небольшой амплитуды.
Ниже мы выведем уравнение Бюргерса для одномерных неустановившихся движений газа с плоской, цилиндрической и сферической симметрией. Пространственную координату обозначим через
Нас интересуют движения с малой амплитудой, характеризуемой параметром
плотность
скорость
(в направлении оси
) и энтропия
являются безразмерными и определяются следующим образом:
Индекс указывает невозмущеиные значения, которые будем считать постоянными, а — скорость звука, а
удельная теплоемкость при постоянном давлении. Соответствующие безразмерные независимые переменные определяются так,
что расстояние измеряется в единицах характерной длины волны I, а время — в единицах характерного периода времени, за которое волна распространяется на расстояние I:
Соответствующей мерой величины I служит отношение
которое характеризует максимальный наклон профиля скорости. (Синусоидальная волна имеет длину
. В этих обозначениях нестационарные уравнения Навье — Стокса записываются в виде
где
вектор-столбец, составляющими которого являются искомые переменные,
вектор-столбец, определяемый геометрией задачи:
здесь
для движений с плоской, цилиндрической и сферической симметрией соответственно, а матрицы
имеют вид
Входящая в матрицу С безразмерная температура
связана с
соотношением
Наряду с малым параметром
характеризующим амплитуду волны, мы имеем и другие малые параметры: параметр
определяемый начальным движением, которое может быть обусловлено, например, движением поршня по закону