Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
1. Волны в средах с дисперсиейИзучение волн с дисперсией начнем с бегущих периодических волн, которые в линейной теории являются синусоидальными и могут быть представлены в комплексной форме:
где функция В качестве примеров приведем уравнение балки
для которого
Линейное уравнение Кортевега — де Вриза записывается следующим образом:
при
Ни одно из этих дифференциальных уравнений не относится к гиперболическому типу. Более того, решения в виде волн могут допускать также интегральные уравнения. Например,
или
Следует заметить, что в (6) фазовая скорость
Аналогично, ядро В линейной теории волн на воде имеются элементарные решения, которые приводят к выражению (1) для высоты поверхности воды относительно невозмущенного уровня; при этом дисперсионное соотношение записывается в виде
где Такое разнообразие уравнений, описывающих волновое движение, показывает, что их общим свойством является скорее В линейных задачах дифференциальные уравнения можно, пожалуй, рассматривать просто как «источники» соответствующего дисперсионного соотношения, отводя дифференциальным уравнениям второстепенную роль. Как отмечалось выше, по дисперсионному соотношению всегда можно восстановить связанное с ним дифференциальное уравнение. Для линейных уравнений в частных производных вида
[см., например, уравнения (3) и (4)] дисперсионное соотношение имеет простой вид:
с очевидным соответствием
между этими уравнениями. Ясно, что если в дифференциальных уравнениях Обобщение на двух- и трехмерные случаи осуществляется непосредственно подстановкой в уравнения (1) и (2) волнового вектора к, что дает
Фазовая скорость равна по величине В линейных задачах более общие решения получают с помощью суперпозиции решений (1) или (11) с различными волновыми числами к и соответствующими частотами
В одномерном случае условие (12) записывается в виде
Разумеется, эти величины могут обращаться в нуль для отдельных значений к или предельных значений Дисперсионное соотношение, используемое при получении общих решений методом Фурье и, как мы увидим ниже, в более непосредственных асимптотических методах, позволяет провести общее исследование линейных задач. Однако этого явно недостаточно для решения нелинейных задач. Можно сформулировать задачу о волнах с дисперсией, исходя из существования периодических волн, аналогичных (1), но суперпозицию фурье-компонент нельзя использовать для последующих операций. Вероятно, впервые нелинейные волны с дисперсией были рассмотрены Стоксом в 1847 г. в связи с его исследованиями волн на воде. Для этих волн он нашел решение нелинейной задачи, используя разложение всех величин в ряд по степеням амплитуды, причем равномерная сходимость рядов обеспечивалась тем, что частота считалась зависящей от амплитуды. (Впоследствии этот метод стал известен как метод Пуанкаре!) В случае волн на глубокой воде соответствующие разложения для возвышения поверхности и частоты имеют вид
(Здесь и VIII), которое приближенно описывает волны на мелкой воде, является одним из наиболее важных примеров такого рода. Его преимущество связано с тем, что можно исключить вертикальную координату и получить в результате простое уравнение для возвышения поверхности:
где
Подстановка выражений (16) в (15) приводит к обыкновенному дифференциальному уравнению. После двукратного его интегрирования получаем
здесь
Можно сделать общее заключение, которое состоит в том, что признаком нелинейных волн с дисперсией является существование решения в виде периодических волн
где Простейшим примером, который приобрел интерес в последнее время, может служить нелинейное обобщение уравнения Клейна — Гордона:
Это уравнение относится к гиперболическому типу, но нас интересует дисперсионное поведение волны вдали от ее фронта. (Появление в одном и том же уравнении как «гиперболического», так и «дисперсионного» поведения решений еще раз демонстрирует сложность проблемы классификации.) Периодические решения удовлетворяют уравнению
первый интеграл которого записывается в виде
Постоянную интегрирования А можно использовать как параметр, эквивалентный амплитуде а. Уравнение (22) можно решить, причем для функции
Период
здесь Следующий шаг состоит в том, чтобы использовать такие периодические волны для получения более общих (нестационарных) решений. Очевидно, что в линейных задачах общее решение находят методом суперпозиции спектральных компонент, т. е. используя фурье-синтез. Этот метод мы изучим в следующем разделе, прежде чем вернемся к рассмотрению нелинейных задач.
|
1 |
Оглавление
|