Главная > Теория автоматического регулирования. Книга 3. Часть I
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

4. СИСТЕМЫ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ КОНЕЧНОГО СОСТОЯНИЯ И ИХ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Поясним метод исследования нестационарных систем при помощи дифференциального уравнения для параметрической передаточной функции в комплексной области на примере одного класса систем автоматического регулирования конечного состояния, получившего на практике широкое применение. Структурная схема системы изображена на рис. II 1.4.

Специфическая особенность систем автоматического регулирования конечного состояния заключается в том, что время регулирования ограничено некоторой величиной и цель регулирования состоит в достижении к моменту заданного состояния,

характеризуемого в общем случае координатами изображающей точки в фазовом пространстве. В частном случае под состоянием системы понимается только величина регулируемой переменной. Теории таких систем посвящены работы [1], [13].

Ниже излагается частотный метод анализа и синтеза систем конечного состояния, основанный на решении дифференциального уравнения, определяющего параметрическую передаточную функцию переменной системы, в комплексной области. Такого рода дифференциальное уравнение для общего случая полиномиальных коэффициентов имеет вид (II 1.45).

К системам автоматического регулирования конечным состоянием можно отнести:

систему автоматической посадки самолета, систему управления самонаводящейся ракетой [11], систему автоматического регулирования скорости намотки металлической полосы (или проволоки) на барабан и т. д.

Рассмотрим систему автоматической посадки самолета (рис. . В данном случае цель регулирования заключается в обеспечении нулевой ошибки к моменту вывода самолета на радиомаяк [1].

Рис. III.4. Типовая структурная схема системы регулирования конечного состояния

Рис. III.5. Структурная схема системы автоматической посадки самолета

При надлежащей линеаризации уравнений движения самолета система автоматической посадки описывается дифференциальными уравнениями вида

где отклонение курса самолета от посадочного;

- отклонение вектора скорости самолета;

— угол крена;

— боковое отклонение самолета; — угол пеленга;

— операторы дифференциального уравнения контура стабилизации самолета;

— параметры контура управления самолета;

V — скорость самолета;

- возмущающие воздействия.

Системе уравнений (III.48) соответствует структурная схема, изображенная на рис. III.5, б, аналогичная схеме, приведенной на рис. II 1.4. К такой же структурной схеме приводится система автоматического управления самонаводящейся ракетой (см. [3]).

Рис. III.6. Принципиальная схема системы регулирования скорости намотки металлической полосы на барабан

Рассмотрим, теперь систему автоматического регулирования скорости намотки металлической полосы на барабан (рис. III.6). Она состоит из электронного и электромашинного усилителей и электродвигателя, который через редуктор вращает барабан с металлической полосой. Скорость вращения измеряется тахогенератором. Уравнения системы имеют вид

где момент инерции барабана с металлической полосой, изменяющийся по мере смотки полосы;

угловая скорость вала электродвигателя; крутящий момент электродвигателя; ток якоря;

— параметры электродвигателя, усилителей и тахогенератора;

— входное напряжение, определяющее скорость вращения;

— полиномы передаточной функции корректирующего устройства.

Системе уравнений (111.49) также соответствует структурная схема, изображенная на рис. II 1.4.

Исследование рассмотренных выше систем автоматического регулирования конечного состояния имеет ряд специфических особенностей. Для систем данного класса особое значение имеют динамические и случайные ошибки в конце управления. Поэтому при исследовании наибольшую роль играют параметрические передаточные функции, соответствующие конечному моменту времени.

Для систем рассматриваемого класса при определении параметрической передаточной функции удобно использовать дифференциальное уравнение не во временной, а в комплексной области, так как последнее является уравнением первого порядка вне зависимости от порядка дифференциального уравнения стационарной части системы.

Рассмотрим структурную схему, приведенную на рис. II 1.4. Пусть

где — некоторые полиномы от причем полиномы имеют порядок, по крайней мере, на единицу больше, чем порядок

Структурной схеме, показанной на рис. II 1.4, соответствует следующее дифференциальное уравнение:

где

или в стандартной форме

где

Тогда, используя уравнения (III.50), (III.45) и (III.47), получим следующее уравнение для передаточной функции:

Подставляя выражения для и найдем

Уравнение (III.53) является основным при анализе систем рассматриваемого класса. Из него можно получить передаточную функцию системы для любого момента времени

Аналитическое решение уравнения (II 1.53) в общем виде затруднительно. Более целесообразным представляется определение частотных характеристик для частного вида уравнения (II 1.53), а затем их нахождение для уравнения общего вида.

Рассмотрим вначале решение для частного случая, когда и уравнение (II 1.53) сводится к виду

или

или

Возможны два способа решения уравнения (II 1.54). Один из них предполагает известным разложение передаточной функции стационарной части на элементарные дроби, второй не имеет этого ограничения и оперирует только с частотной характеристикой

1
Оглавление
email@scask.ru