Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Задача анализа поверхностных волн на воде сложна не только тем, что зто граничная задача с подвижной граннцей, но и тем, что в ней могут встретиться различные типы волнового движения в зависимости от того, велико или мало отношенне амплитуды волны к глубине. В этой главе мы ограничимся рассмотрением длинных поверхностных волн на мелкой воде, игнорируя эффекты трения; эта ситуация соответствует экспериментам Скотта Расселла и была теоретически исследована Буссинеском [1877], Кортевегом и де Фризом [1895] и некоторыми другими авторами. Здесь мы лишь выборочно рассмотрнм несколько вопросов этой весьма обширной темы, и интересующемуся читателю рекомендуется обратиться к более подробным работам, раєсматривающим различные тилы волновых движений на воде, например к соответствующим главам таких книг, как Лэм [1932], Стоукер [1957], Уизем [1974], Лайтхилл [1978]. Этот предмет имеет довольно длинную и примечательную иєторию, восходящую ко времени єэра Джорджа Стокса и более ранним, т. е. к первой половине прошлого века. Наблюдения уединенной волны Скоттом Расселлом были произведены незадолго до открытия уравнений Навье — Стокса и, как мы видели в гл. 1, их истинная значимость долгое время оставалась непонятной. Тот факт; что для решения этой задачи необходимо нечто из квантовой механики, сразу сделал ее очень современной, несмотря на ее древнюю родословную. Нам понадобится некоторое время для того, чтобы представить задачу в удобной форме, но наша основная цель, как отмечалось в разд. 5.1, состоит в том, чтобы получить простейшую систему уравнений движения, в которой все переменные приведены к безразмерной форме. Как только это будет достигнуто, процедуры возмущения будут применяться гораздо легче. Рассмотрим невязкую несжимаемую жидкость плотности Дно жидкости находится при а уравнение импульса имеет вид где Используя результат (5.3.2) и интегрируя, найдем, что наши два уравнения движения приобретают вид abla^{2} \Phi=0, \ где Наша задача — найти уравнение для Нормальная скорость жидкости равна v. Приравнивая эти два выражения, получим что и означает Заметим, что это граничное условие, и оно справедливо только при где выражение в правой части (5.3.11) представляет собой поверхностное натяжение (Кортевег и де Фриз [1895], Уизем [1974, гл. 131). Для таких жидкостей, как вода, силы поверхностного натяжения совсем малы, и пока мы будем пренебрегать ими, чтобы сделать вычисления как можно проще; мы вернемся к ним позже, в конце раздела. На свободной поверхности уравнение (5.3.5) теперь имеет вид Граничные условия требуют, чтобы нормальная составляющая скорости abla^{2} \varphi=0 \text { внутри жидкости }(-h<z<0), \ Теперь нужно решить уравнение Лапласа в жидкости и затем применить три граничных условия. Кортевег и де Фриз в своей работе в журнале Philosophical Magazine искали решение уравнения Лапласа в виде быстро сходящегося ряда по abla^{2} \Psi=0, \ Рассмотрим решение уравнения (5.3.17) с разделенными перемен ными в виде Из уравнения Лапласа получается Возьмем решение уравнения (5.3.19) в виде и, применяя условие правая часть которого является четной функцией переменной Формула (5.3.22) показывает, что для волн, имеющих длиму, много большую глубины жидкости, т. е. Осталась только одна переменная, которую еще нужно преобразовать к безразмерному виду, — переменная Начиная с этого момента мы перестанем принимать во внимание изменения по Отсюда ясно, что и где безразмерные константы Мы потратили некоторое время на то, чтобы получить уравнения (5.3.25)-(5.3.28), но зато они выгодно отличаются от уравнений (5.3.13)-(5.3.16) тем, что в них входят безразмерные константы Возьмем Ф в форме Подстановка в уравнение Лапласа этого ряда приводит к рекуррентному соотношению Из граничного условия Мы получили выражение для решения Ф в виде ряда всюду в жидкости, т. е. в области В длинноволновом приближении, если пренебречь всеми членами, содержащими Эти уравнения содержат нелинейные члены, но, как и прежде, не содержат дисперсионных членов. Для выделения из уравнений (5.3.32), (5.3.33) членов ведущего порядка в длинноволновом приближении недостаточно взять лишь члены низшего порядка по Поскольку граничные условия для Совершая эту подстановку в (5.3.32), получим Мы пренебрегли квадратичными членами в порядке Рассматривая последовательно каждое из этих двух уравнений и действуя, как в задаче об ионноакустических волнах разд. 5.2, получим, что а для уравнения (5.3.39) — Рассмотрение членов при Подставляя это в два уравнения при порядке представляющее собой уравнение КдФ. Введение переменных Теперь наблюдения Скотта Расселла легко объяснить. В гл. 1 мы привели рисунок, изображающий один из его экспериментов (рис. 1.1), в котором вода перед перегородкой удерживалась на более высоком уровне, чем за перегородкой. Удаление перегородки повлечет за собой движение масс воды вперед и в зависимости от высоты и ширины потока будут рождаться солитоны. Это, разумеется, эквнвалентно тому, что начальные данные для уравнения КдФ имели вид прямоугольной волны: Число дискретных собственных значений, соответствующих этом у начальному условию, дает число солитонов, которые будут появляться и плыть вниз по желобу. (См. вычисления гл. 2 и 4.) Мы заметим, что в задаче для уравнения Шрёдингера только прямоугольная потенциальная яма, а не прямоугольный потенциальный барьер, обладает связанными состояниями, но при той формулировке уравнения Шрёдингера, которая давалась в гл. 2 и 3 , нелинейный член входил в уравнение КдФ с отрицательным знаком (мы брали
|
1 |
Оглавление
|